Properties

Label 2-182070-1.1-c1-0-1
Degree $2$
Conductor $182070$
Sign $1$
Analytic cond. $1453.83$
Root an. cond. $38.1292$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 5-s − 7-s − 8-s + 10-s + 11-s − 5·13-s + 14-s + 16-s − 4·19-s − 20-s − 22-s + 6·23-s + 25-s + 5·26-s − 28-s − 4·29-s − 3·31-s − 32-s + 35-s + 4·37-s + 4·38-s + 40-s − 3·41-s + 8·43-s + 44-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.447·5-s − 0.377·7-s − 0.353·8-s + 0.316·10-s + 0.301·11-s − 1.38·13-s + 0.267·14-s + 1/4·16-s − 0.917·19-s − 0.223·20-s − 0.213·22-s + 1.25·23-s + 1/5·25-s + 0.980·26-s − 0.188·28-s − 0.742·29-s − 0.538·31-s − 0.176·32-s + 0.169·35-s + 0.657·37-s + 0.648·38-s + 0.158·40-s − 0.468·41-s + 1.21·43-s + 0.150·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 182070 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 182070 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(182070\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(1453.83\)
Root analytic conductor: \(38.1292\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 182070,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.2718165095\)
\(L(\frac12)\) \(\approx\) \(0.2718165095\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 + T \)
7 \( 1 + T \)
17 \( 1 \)
good11 \( 1 - T + p T^{2} \) 1.11.ab
13 \( 1 + 5 T + p T^{2} \) 1.13.f
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 + 3 T + p T^{2} \) 1.31.d
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - T + p T^{2} \) 1.47.ab
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 14 T + p T^{2} \) 1.59.o
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 + 11 T + p T^{2} \) 1.67.l
71 \( 1 + 15 T + p T^{2} \) 1.71.p
73 \( 1 - 9 T + p T^{2} \) 1.73.aj
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 3 T + p T^{2} \) 1.83.d
89 \( 1 + 5 T + p T^{2} \) 1.89.f
97 \( 1 + T + p T^{2} \) 1.97.b
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.05835066200811, −12.53237830283043, −12.20802567270168, −11.77216565415670, −11.13844030644572, −10.66079704892262, −10.50953929728093, −9.587151021123394, −9.392268338006857, −8.993792168476958, −8.437535866158758, −7.708821216936271, −7.498960762562741, −7.008773044573318, −6.484303492081985, −5.938175246499529, −5.374015236637172, −4.597938442541544, −4.363672273064324, −3.506466586557198, −2.975307061205913, −2.476007362591647, −1.788592608772499, −1.094337205395065, −0.1797625254162904, 0.1797625254162904, 1.094337205395065, 1.788592608772499, 2.476007362591647, 2.975307061205913, 3.506466586557198, 4.363672273064324, 4.597938442541544, 5.374015236637172, 5.938175246499529, 6.484303492081985, 7.008773044573318, 7.498960762562741, 7.708821216936271, 8.437535866158758, 8.993792168476958, 9.392268338006857, 9.587151021123394, 10.50953929728093, 10.66079704892262, 11.13844030644572, 11.77216565415670, 12.20802567270168, 12.53237830283043, 13.05835066200811

Graph of the $Z$-function along the critical line