Properties

Label 2-1815-1.1-c3-0-7
Degree $2$
Conductor $1815$
Sign $1$
Analytic cond. $107.088$
Root an. cond. $10.3483$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.60·2-s + 3·3-s + 4.97·4-s + 5·5-s − 10.8·6-s − 31.6·7-s + 10.9·8-s + 9·9-s − 18.0·10-s + 14.9·12-s − 38.8·13-s + 113.·14-s + 15·15-s − 79.0·16-s − 138.·17-s − 32.4·18-s − 12.5·19-s + 24.8·20-s − 94.8·21-s − 179.·23-s + 32.7·24-s + 25·25-s + 139.·26-s + 27·27-s − 157.·28-s − 119.·29-s − 54.0·30-s + ⋯
L(s)  = 1  − 1.27·2-s + 0.577·3-s + 0.621·4-s + 0.447·5-s − 0.735·6-s − 1.70·7-s + 0.482·8-s + 0.333·9-s − 0.569·10-s + 0.358·12-s − 0.828·13-s + 2.17·14-s + 0.258·15-s − 1.23·16-s − 1.97·17-s − 0.424·18-s − 0.152·19-s + 0.277·20-s − 0.985·21-s − 1.62·23-s + 0.278·24-s + 0.200·25-s + 1.05·26-s + 0.192·27-s − 1.06·28-s − 0.762·29-s − 0.328·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1815 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1815 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1815\)    =    \(3 \cdot 5 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(107.088\)
Root analytic conductor: \(10.3483\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1815,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.2815110143\)
\(L(\frac12)\) \(\approx\) \(0.2815110143\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 3T \)
5 \( 1 - 5T \)
11 \( 1 \)
good2 \( 1 + 3.60T + 8T^{2} \)
7 \( 1 + 31.6T + 343T^{2} \)
13 \( 1 + 38.8T + 2.19e3T^{2} \)
17 \( 1 + 138.T + 4.91e3T^{2} \)
19 \( 1 + 12.5T + 6.85e3T^{2} \)
23 \( 1 + 179.T + 1.21e4T^{2} \)
29 \( 1 + 119.T + 2.43e4T^{2} \)
31 \( 1 - 75.6T + 2.97e4T^{2} \)
37 \( 1 + 133.T + 5.06e4T^{2} \)
41 \( 1 + 47.0T + 6.89e4T^{2} \)
43 \( 1 - 74.0T + 7.95e4T^{2} \)
47 \( 1 + 375.T + 1.03e5T^{2} \)
53 \( 1 + 76.7T + 1.48e5T^{2} \)
59 \( 1 - 866.T + 2.05e5T^{2} \)
61 \( 1 + 442.T + 2.26e5T^{2} \)
67 \( 1 + 633.T + 3.00e5T^{2} \)
71 \( 1 + 484.T + 3.57e5T^{2} \)
73 \( 1 - 436.T + 3.89e5T^{2} \)
79 \( 1 - 472.T + 4.93e5T^{2} \)
83 \( 1 + 249.T + 5.71e5T^{2} \)
89 \( 1 - 236.T + 7.04e5T^{2} \)
97 \( 1 - 1.52e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.038695503761967112167953727993, −8.398475857088818391303033327545, −7.41288154938285360421059337825, −6.74964830240632535477376975754, −6.10893661138658899342970194791, −4.69054480888648824539252254453, −3.75033995049429060257948107802, −2.54611547018043129420590280641, −1.90064964020114025610781533867, −0.27604139538996374723181536907, 0.27604139538996374723181536907, 1.90064964020114025610781533867, 2.54611547018043129420590280641, 3.75033995049429060257948107802, 4.69054480888648824539252254453, 6.10893661138658899342970194791, 6.74964830240632535477376975754, 7.41288154938285360421059337825, 8.398475857088818391303033327545, 9.038695503761967112167953727993

Graph of the $Z$-function along the critical line