Properties

Label 2-1815-1.1-c3-0-117
Degree $2$
Conductor $1815$
Sign $1$
Analytic cond. $107.088$
Root an. cond. $10.3483$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.90·2-s − 3·3-s + 16.0·4-s + 5·5-s − 14.7·6-s − 0.166·7-s + 39.4·8-s + 9·9-s + 24.5·10-s − 48.1·12-s + 27.6·13-s − 0.816·14-s − 15·15-s + 65.0·16-s + 4.79·17-s + 44.1·18-s − 11.2·19-s + 80.2·20-s + 0.499·21-s + 107.·23-s − 118.·24-s + 25·25-s + 135.·26-s − 27·27-s − 2.67·28-s + 123.·29-s − 73.5·30-s + ⋯
L(s)  = 1  + 1.73·2-s − 0.577·3-s + 2.00·4-s + 0.447·5-s − 1.00·6-s − 0.00899·7-s + 1.74·8-s + 0.333·9-s + 0.775·10-s − 1.15·12-s + 0.590·13-s − 0.0155·14-s − 0.258·15-s + 1.01·16-s + 0.0683·17-s + 0.577·18-s − 0.135·19-s + 0.896·20-s + 0.00519·21-s + 0.976·23-s − 1.00·24-s + 0.200·25-s + 1.02·26-s − 0.192·27-s − 0.0180·28-s + 0.787·29-s − 0.447·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1815 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1815 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1815\)    =    \(3 \cdot 5 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(107.088\)
Root analytic conductor: \(10.3483\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1815,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(6.594702376\)
\(L(\frac12)\) \(\approx\) \(6.594702376\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
5 \( 1 - 5T \)
11 \( 1 \)
good2 \( 1 - 4.90T + 8T^{2} \)
7 \( 1 + 0.166T + 343T^{2} \)
13 \( 1 - 27.6T + 2.19e3T^{2} \)
17 \( 1 - 4.79T + 4.91e3T^{2} \)
19 \( 1 + 11.2T + 6.85e3T^{2} \)
23 \( 1 - 107.T + 1.21e4T^{2} \)
29 \( 1 - 123.T + 2.43e4T^{2} \)
31 \( 1 + 75.8T + 2.97e4T^{2} \)
37 \( 1 - 351.T + 5.06e4T^{2} \)
41 \( 1 - 355.T + 6.89e4T^{2} \)
43 \( 1 + 313.T + 7.95e4T^{2} \)
47 \( 1 - 160.T + 1.03e5T^{2} \)
53 \( 1 - 335.T + 1.48e5T^{2} \)
59 \( 1 - 25.2T + 2.05e5T^{2} \)
61 \( 1 - 461.T + 2.26e5T^{2} \)
67 \( 1 + 627.T + 3.00e5T^{2} \)
71 \( 1 - 119.T + 3.57e5T^{2} \)
73 \( 1 - 631.T + 3.89e5T^{2} \)
79 \( 1 - 949.T + 4.93e5T^{2} \)
83 \( 1 - 43.2T + 5.71e5T^{2} \)
89 \( 1 - 380.T + 7.04e5T^{2} \)
97 \( 1 - 1.69e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.951215004250896786344646621275, −7.79238765086626497840594985741, −6.81689397628044182463612636859, −6.27894182394417196599868690497, −5.57313624834807443827080785701, −4.87341577596299416335976996724, −4.10560326493151688003551221408, −3.15937184143287804755414127085, −2.21876662388651784970234107899, −0.993249603495321323497176438736, 0.993249603495321323497176438736, 2.21876662388651784970234107899, 3.15937184143287804755414127085, 4.10560326493151688003551221408, 4.87341577596299416335976996724, 5.57313624834807443827080785701, 6.27894182394417196599868690497, 6.81689397628044182463612636859, 7.79238765086626497840594985741, 8.951215004250896786344646621275

Graph of the $Z$-function along the critical line