Properties

Label 2-1805-95.7-c0-0-0
Degree $2$
Conductor $1805$
Sign $0.557 - 0.830i$
Analytic cond. $0.900812$
Root an. cond. $0.949111$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.866 + 0.5i)4-s + (0.5 + 0.866i)5-s + (1 + i)7-s + (−0.866 − 0.5i)9-s + (0.499 + 0.866i)16-s + (0.366 − 1.36i)17-s + 0.999i·20-s + (−0.366 − 1.36i)23-s + (−0.499 + 0.866i)25-s + (0.366 + 1.36i)28-s + (−0.366 + 1.36i)35-s + (−0.499 − 0.866i)36-s + (−1.36 − 0.366i)43-s − 0.999i·45-s + (−1.36 + 0.366i)47-s + ⋯
L(s)  = 1  + (0.866 + 0.5i)4-s + (0.5 + 0.866i)5-s + (1 + i)7-s + (−0.866 − 0.5i)9-s + (0.499 + 0.866i)16-s + (0.366 − 1.36i)17-s + 0.999i·20-s + (−0.366 − 1.36i)23-s + (−0.499 + 0.866i)25-s + (0.366 + 1.36i)28-s + (−0.366 + 1.36i)35-s + (−0.499 − 0.866i)36-s + (−1.36 − 0.366i)43-s − 0.999i·45-s + (−1.36 + 0.366i)47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1805 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.557 - 0.830i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1805 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.557 - 0.830i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1805\)    =    \(5 \cdot 19^{2}\)
Sign: $0.557 - 0.830i$
Analytic conductor: \(0.900812\)
Root analytic conductor: \(0.949111\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{1805} (292, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1805,\ (\ :0),\ 0.557 - 0.830i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.576027531\)
\(L(\frac12)\) \(\approx\) \(1.576027531\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (-0.5 - 0.866i)T \)
19 \( 1 \)
good2 \( 1 + (-0.866 - 0.5i)T^{2} \)
3 \( 1 + (0.866 + 0.5i)T^{2} \)
7 \( 1 + (-1 - i)T + iT^{2} \)
11 \( 1 + T^{2} \)
13 \( 1 + (-0.866 + 0.5i)T^{2} \)
17 \( 1 + (-0.366 + 1.36i)T + (-0.866 - 0.5i)T^{2} \)
23 \( 1 + (0.366 + 1.36i)T + (-0.866 + 0.5i)T^{2} \)
29 \( 1 + (0.5 + 0.866i)T^{2} \)
31 \( 1 + T^{2} \)
37 \( 1 + iT^{2} \)
41 \( 1 + (-0.5 + 0.866i)T^{2} \)
43 \( 1 + (1.36 + 0.366i)T + (0.866 + 0.5i)T^{2} \)
47 \( 1 + (1.36 - 0.366i)T + (0.866 - 0.5i)T^{2} \)
53 \( 1 + (-0.866 + 0.5i)T^{2} \)
59 \( 1 + (0.5 - 0.866i)T^{2} \)
61 \( 1 + (-0.5 - 0.866i)T^{2} \)
67 \( 1 + (0.866 - 0.5i)T^{2} \)
71 \( 1 + (-0.5 + 0.866i)T^{2} \)
73 \( 1 + (1.36 + 0.366i)T + (0.866 + 0.5i)T^{2} \)
79 \( 1 + (0.5 - 0.866i)T^{2} \)
83 \( 1 + (-1 + i)T - iT^{2} \)
89 \( 1 + (0.5 + 0.866i)T^{2} \)
97 \( 1 + (-0.866 - 0.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.554227985570855487638865675287, −8.653472023517116876042850829491, −8.065194557822983273295764477917, −7.14768771365253788352363500517, −6.39494738313924838814316052162, −5.73675234918728121096817945139, −4.83523607428323493651210226279, −3.30777871749459673314312383854, −2.69024534473089360619066240179, −1.90555224068989314331050168099, 1.36290705284242985829644560132, 1.95018773192803137022730556684, 3.40894672731197826436305030439, 4.58288894182124848905408330761, 5.39844900641203368948527819803, 5.95066718668048136819665674217, 6.96829873985163941699099799107, 8.055058707743443384007346282164, 8.189525313236404502595647420099, 9.464295387604048702981351662705

Graph of the $Z$-function along the critical line