L(s) = 1 | + (0.707 + 1.22i)2-s + (−0.707 − 1.22i)3-s + (−0.499 + 0.866i)4-s + (0.5 + 0.866i)5-s + (0.999 − 1.73i)6-s + (−0.499 + 0.866i)9-s + (−0.707 + 1.22i)10-s + 1.41·12-s + (0.707 − 1.22i)13-s + (0.707 − 1.22i)15-s + (0.499 + 0.866i)16-s − 1.41·18-s − 0.999·20-s + (−0.499 + 0.866i)25-s + 2·26-s + ⋯ |
L(s) = 1 | + (0.707 + 1.22i)2-s + (−0.707 − 1.22i)3-s + (−0.499 + 0.866i)4-s + (0.5 + 0.866i)5-s + (0.999 − 1.73i)6-s + (−0.499 + 0.866i)9-s + (−0.707 + 1.22i)10-s + 1.41·12-s + (0.707 − 1.22i)13-s + (0.707 − 1.22i)15-s + (0.499 + 0.866i)16-s − 1.41·18-s − 0.999·20-s + (−0.499 + 0.866i)25-s + 2·26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1805 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.671 - 0.740i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1805 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.671 - 0.740i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.527964791\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.527964791\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-0.5 - 0.866i)T \) |
| 19 | \( 1 \) |
good | 2 | \( 1 + (-0.707 - 1.22i)T + (-0.5 + 0.866i)T^{2} \) |
| 3 | \( 1 + (0.707 + 1.22i)T + (-0.5 + 0.866i)T^{2} \) |
| 7 | \( 1 - T^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + (-0.707 + 1.22i)T + (-0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 - 1.41T + T^{2} \) |
| 41 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (0.707 - 1.22i)T + (-0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.707 + 1.22i)T + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (0.707 + 1.22i)T + (-0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.491018825364395831617891192321, −8.182045537910466434136139412958, −7.65760307513148747016785159461, −6.98165101047589029290026821811, −6.27074304660760730083286023088, −5.88723929792624444368846182843, −5.21121631345087000205805225512, −3.90595830391495515150895757561, −2.70744949697791368295009133013, −1.34575692393145751466489546728,
1.31679355163291657121485635824, 2.45602797975260126361993665697, 3.85777897993267101066853400577, 4.22469595122607518637532847040, 5.01897227222610891168895507691, 5.64480108074740047496686458861, 6.60050261349348357503519818599, 8.026652247175540841132096890057, 9.105076786593589524895124520629, 9.584558832150710262453694530865