Properties

Label 2-1805-1.1-c1-0-91
Degree $2$
Conductor $1805$
Sign $1$
Analytic cond. $14.4129$
Root an. cond. $3.79644$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.75·2-s + 1.49·3-s + 5.60·4-s + 5-s + 4.11·6-s − 2.84·7-s + 9.94·8-s − 0.774·9-s + 2.75·10-s − 0.864·11-s + 8.36·12-s + 0.643·13-s − 7.85·14-s + 1.49·15-s + 16.2·16-s + 3.74·17-s − 2.13·18-s + 5.60·20-s − 4.24·21-s − 2.38·22-s + 0.417·23-s + 14.8·24-s + 25-s + 1.77·26-s − 5.63·27-s − 15.9·28-s − 9.70·29-s + ⋯
L(s)  = 1  + 1.95·2-s + 0.861·3-s + 2.80·4-s + 0.447·5-s + 1.67·6-s − 1.07·7-s + 3.51·8-s − 0.258·9-s + 0.872·10-s − 0.260·11-s + 2.41·12-s + 0.178·13-s − 2.09·14-s + 0.385·15-s + 4.05·16-s + 0.907·17-s − 0.503·18-s + 1.25·20-s − 0.927·21-s − 0.508·22-s + 0.0870·23-s + 3.02·24-s + 0.200·25-s + 0.347·26-s − 1.08·27-s − 3.01·28-s − 1.80·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1805 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1805 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1805\)    =    \(5 \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(14.4129\)
Root analytic conductor: \(3.79644\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1805,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(7.616556748\)
\(L(\frac12)\) \(\approx\) \(7.616556748\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - T \)
19 \( 1 \)
good2 \( 1 - 2.75T + 2T^{2} \)
3 \( 1 - 1.49T + 3T^{2} \)
7 \( 1 + 2.84T + 7T^{2} \)
11 \( 1 + 0.864T + 11T^{2} \)
13 \( 1 - 0.643T + 13T^{2} \)
17 \( 1 - 3.74T + 17T^{2} \)
23 \( 1 - 0.417T + 23T^{2} \)
29 \( 1 + 9.70T + 29T^{2} \)
31 \( 1 - 4.93T + 31T^{2} \)
37 \( 1 - 6.36T + 37T^{2} \)
41 \( 1 + 4.01T + 41T^{2} \)
43 \( 1 + 2.05T + 43T^{2} \)
47 \( 1 + 3.95T + 47T^{2} \)
53 \( 1 + 10.9T + 53T^{2} \)
59 \( 1 - 2.45T + 59T^{2} \)
61 \( 1 - 6.33T + 61T^{2} \)
67 \( 1 + 2.53T + 67T^{2} \)
71 \( 1 + 1.78T + 71T^{2} \)
73 \( 1 + 7.13T + 73T^{2} \)
79 \( 1 - 1.82T + 79T^{2} \)
83 \( 1 + 7.43T + 83T^{2} \)
89 \( 1 - 4.44T + 89T^{2} \)
97 \( 1 + 10.8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.477105475227032730908261940952, −8.210641440477554150810095754989, −7.46101228642419869243027143210, −6.56289709165895704729721456629, −5.89412080158017210107251601799, −5.26796861619405731763144706433, −4.11481977160444074387543562783, −3.25572831647002704529776690325, −2.86754082881879396300246703030, −1.79595525762831313268118671784, 1.79595525762831313268118671784, 2.86754082881879396300246703030, 3.25572831647002704529776690325, 4.11481977160444074387543562783, 5.26796861619405731763144706433, 5.89412080158017210107251601799, 6.56289709165895704729721456629, 7.46101228642419869243027143210, 8.210641440477554150810095754989, 9.477105475227032730908261940952

Graph of the $Z$-function along the critical line