L(s) = 1 | + 19i·7-s − 22·11-s + i·13-s − 58i·17-s + 53·19-s − 58i·23-s + 22·29-s − 35·31-s + 270i·37-s + 468·41-s − 431i·43-s − 230i·47-s − 18·49-s + 446·59-s + 127·61-s + ⋯ |
L(s) = 1 | + 1.02i·7-s − 0.603·11-s + 0.0213i·13-s − 0.827i·17-s + 0.639·19-s − 0.525i·23-s + 0.140·29-s − 0.202·31-s + 1.19i·37-s + 1.78·41-s − 1.52i·43-s − 0.713i·47-s − 0.0524·49-s + 0.984·59-s + 0.266·61-s + ⋯ |
Λ(s)=(=(1800s/2ΓC(s)L(s)(0.447−0.894i)Λ(4−s)
Λ(s)=(=(1800s/2ΓC(s+3/2)L(s)(0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
1800
= 23⋅32⋅52
|
Sign: |
0.447−0.894i
|
Analytic conductor: |
106.203 |
Root analytic conductor: |
10.3055 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1800(649,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1800, ( :3/2), 0.447−0.894i)
|
Particular Values
L(2) |
≈ |
1.811979851 |
L(21) |
≈ |
1.811979851 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1−19iT−343T2 |
| 11 | 1+22T+1.33e3T2 |
| 13 | 1−iT−2.19e3T2 |
| 17 | 1+58iT−4.91e3T2 |
| 19 | 1−53T+6.85e3T2 |
| 23 | 1+58iT−1.21e4T2 |
| 29 | 1−22T+2.43e4T2 |
| 31 | 1+35T+2.97e4T2 |
| 37 | 1−270iT−5.06e4T2 |
| 41 | 1−468T+6.89e4T2 |
| 43 | 1+431iT−7.95e4T2 |
| 47 | 1+230iT−1.03e5T2 |
| 53 | 1−1.48e5T2 |
| 59 | 1−446T+2.05e5T2 |
| 61 | 1−127T+2.26e5T2 |
| 67 | 1−811iT−3.00e5T2 |
| 71 | 1+36T+3.57e5T2 |
| 73 | 1−522iT−3.89e5T2 |
| 79 | 1+1.36e3T+4.93e5T2 |
| 83 | 1−1.13e3iT−5.71e5T2 |
| 89 | 1−144T+7.04e5T2 |
| 97 | 1−1.07e3iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.978953864563239822186012059711, −8.386410561804469857769750618171, −7.47625665065262454068042498570, −6.71394656566363103196436034771, −5.62838586415054428676283680000, −5.21112062651992409561914800821, −4.10577686294779830313008645946, −2.88938623916626015743178619688, −2.28651331479010322288551122849, −0.840988129822077940071024306653,
0.49358286890047522587309732690, 1.56349116405121224044442575562, 2.82882624961970486927670791969, 3.80897897010173835143947235725, 4.56214095566332762806990356334, 5.59283556204901695296822275329, 6.34742313617586669267331525610, 7.54008219943278856057609697814, 7.64580490535863809511218551226, 8.797085239517514994844994507050