Properties

Label 2-1800-5.4-c3-0-16
Degree $2$
Conductor $1800$
Sign $0.894 - 0.447i$
Analytic cond. $106.203$
Root an. cond. $10.3055$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4i·7-s − 72·11-s − 6i·13-s + 38i·17-s − 52·19-s − 152i·23-s − 78·29-s + 120·31-s + 150i·37-s − 362·41-s − 484i·43-s + 280i·47-s + 327·49-s + 670i·53-s + 696·59-s + ⋯
L(s)  = 1  − 0.215i·7-s − 1.97·11-s − 0.128i·13-s + 0.542i·17-s − 0.627·19-s − 1.37i·23-s − 0.499·29-s + 0.695·31-s + 0.666i·37-s − 1.37·41-s − 1.71i·43-s + 0.868i·47-s + 0.953·49-s + 1.73i·53-s + 1.53·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1800\)    =    \(2^{3} \cdot 3^{2} \cdot 5^{2}\)
Sign: $0.894 - 0.447i$
Analytic conductor: \(106.203\)
Root analytic conductor: \(10.3055\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{1800} (649, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1800,\ (\ :3/2),\ 0.894 - 0.447i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.226501376\)
\(L(\frac12)\) \(\approx\) \(1.226501376\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + 4iT - 343T^{2} \)
11 \( 1 + 72T + 1.33e3T^{2} \)
13 \( 1 + 6iT - 2.19e3T^{2} \)
17 \( 1 - 38iT - 4.91e3T^{2} \)
19 \( 1 + 52T + 6.85e3T^{2} \)
23 \( 1 + 152iT - 1.21e4T^{2} \)
29 \( 1 + 78T + 2.43e4T^{2} \)
31 \( 1 - 120T + 2.97e4T^{2} \)
37 \( 1 - 150iT - 5.06e4T^{2} \)
41 \( 1 + 362T + 6.89e4T^{2} \)
43 \( 1 + 484iT - 7.95e4T^{2} \)
47 \( 1 - 280iT - 1.03e5T^{2} \)
53 \( 1 - 670iT - 1.48e5T^{2} \)
59 \( 1 - 696T + 2.05e5T^{2} \)
61 \( 1 - 222T + 2.26e5T^{2} \)
67 \( 1 - 4iT - 3.00e5T^{2} \)
71 \( 1 + 96T + 3.57e5T^{2} \)
73 \( 1 - 178iT - 3.89e5T^{2} \)
79 \( 1 - 632T + 4.93e5T^{2} \)
83 \( 1 - 612iT - 5.71e5T^{2} \)
89 \( 1 - 994T + 7.04e5T^{2} \)
97 \( 1 + 1.63e3iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.729506132722121740935377533976, −8.252461804679939124160849011687, −7.47366694378677567527593638023, −6.61374709425533344248739659561, −5.67865959901195474963839717366, −4.93764322837246195963958473084, −4.04455543653042023952337869989, −2.86872127922451614923331089956, −2.12657878612317860353125078668, −0.60467369287496069402479059828, 0.40935333957269288356934686551, 1.95035263958724987888613994055, 2.77872204378069124863887952772, 3.77153685162631980518425940141, 5.04527079815134221666517897767, 5.38820423823188472610113684890, 6.47945172842430259768838614561, 7.41846790654937294001570853889, 8.021432699691598130693618774215, 8.769624283951839779224161818360

Graph of the $Z$-function along the critical line