Properties

Label 2-1800-1.1-c3-0-47
Degree $2$
Conductor $1800$
Sign $-1$
Analytic cond. $106.203$
Root an. cond. $10.3055$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·7-s − 20·11-s − 22·13-s − 14·17-s + 76·19-s + 56·23-s + 154·29-s + 160·31-s + 162·37-s + 390·41-s − 388·43-s − 544·47-s − 279·49-s − 210·53-s + 380·59-s − 794·61-s + 148·67-s + 840·71-s − 858·73-s + 160·77-s + 144·79-s + 316·83-s − 1.09e3·89-s + 176·91-s − 994·97-s + 834·101-s − 1.67e3·103-s + ⋯
L(s)  = 1  − 0.431·7-s − 0.548·11-s − 0.469·13-s − 0.199·17-s + 0.917·19-s + 0.507·23-s + 0.986·29-s + 0.926·31-s + 0.719·37-s + 1.48·41-s − 1.37·43-s − 1.68·47-s − 0.813·49-s − 0.544·53-s + 0.838·59-s − 1.66·61-s + 0.269·67-s + 1.40·71-s − 1.37·73-s + 0.236·77-s + 0.205·79-s + 0.417·83-s − 1.30·89-s + 0.202·91-s − 1.04·97-s + 0.821·101-s − 1.59·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1800\)    =    \(2^{3} \cdot 3^{2} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(106.203\)
Root analytic conductor: \(10.3055\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1800,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + 8 T + p^{3} T^{2} \)
11 \( 1 + 20 T + p^{3} T^{2} \)
13 \( 1 + 22 T + p^{3} T^{2} \)
17 \( 1 + 14 T + p^{3} T^{2} \)
19 \( 1 - 4 p T + p^{3} T^{2} \)
23 \( 1 - 56 T + p^{3} T^{2} \)
29 \( 1 - 154 T + p^{3} T^{2} \)
31 \( 1 - 160 T + p^{3} T^{2} \)
37 \( 1 - 162 T + p^{3} T^{2} \)
41 \( 1 - 390 T + p^{3} T^{2} \)
43 \( 1 + 388 T + p^{3} T^{2} \)
47 \( 1 + 544 T + p^{3} T^{2} \)
53 \( 1 + 210 T + p^{3} T^{2} \)
59 \( 1 - 380 T + p^{3} T^{2} \)
61 \( 1 + 794 T + p^{3} T^{2} \)
67 \( 1 - 148 T + p^{3} T^{2} \)
71 \( 1 - 840 T + p^{3} T^{2} \)
73 \( 1 + 858 T + p^{3} T^{2} \)
79 \( 1 - 144 T + p^{3} T^{2} \)
83 \( 1 - 316 T + p^{3} T^{2} \)
89 \( 1 + 1098 T + p^{3} T^{2} \)
97 \( 1 + 994 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.414724710604148532055144325730, −7.80073575539387212080742124146, −6.89258712048989335199369530037, −6.19902182744199492882518208934, −5.17229772424063150776086663632, −4.51287273463497839984526854023, −3.25089204399064140921049234847, −2.59715529280120275367682839611, −1.21705030534419392775461473751, 0, 1.21705030534419392775461473751, 2.59715529280120275367682839611, 3.25089204399064140921049234847, 4.51287273463497839984526854023, 5.17229772424063150776086663632, 6.19902182744199492882518208934, 6.89258712048989335199369530037, 7.80073575539387212080742124146, 8.414724710604148532055144325730

Graph of the $Z$-function along the critical line