Properties

Label 2-1800-1.1-c3-0-25
Degree $2$
Conductor $1800$
Sign $1$
Analytic cond. $106.203$
Root an. cond. $10.3055$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·7-s + 28·11-s + 16·13-s + 108·17-s + 32·19-s − 28·23-s + 238·29-s − 180·31-s + 40·37-s − 422·41-s − 276·43-s + 60·47-s − 327·49-s + 220·53-s + 804·59-s − 358·61-s + 884·67-s + 64·71-s + 152·73-s − 112·77-s − 932·79-s − 1.29e3·83-s + 1.14e3·89-s − 64·91-s − 824·97-s + 1.29e3·101-s + 1.60e3·103-s + ⋯
L(s)  = 1  − 0.215·7-s + 0.767·11-s + 0.341·13-s + 1.54·17-s + 0.386·19-s − 0.253·23-s + 1.52·29-s − 1.04·31-s + 0.177·37-s − 1.60·41-s − 0.978·43-s + 0.186·47-s − 0.953·49-s + 0.570·53-s + 1.77·59-s − 0.751·61-s + 1.61·67-s + 0.106·71-s + 0.243·73-s − 0.165·77-s − 1.32·79-s − 1.70·83-s + 1.36·89-s − 0.0737·91-s − 0.862·97-s + 1.27·101-s + 1.53·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1800\)    =    \(2^{3} \cdot 3^{2} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(106.203\)
Root analytic conductor: \(10.3055\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1800,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.428001007\)
\(L(\frac12)\) \(\approx\) \(2.428001007\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + 4 T + p^{3} T^{2} \)
11 \( 1 - 28 T + p^{3} T^{2} \)
13 \( 1 - 16 T + p^{3} T^{2} \)
17 \( 1 - 108 T + p^{3} T^{2} \)
19 \( 1 - 32 T + p^{3} T^{2} \)
23 \( 1 + 28 T + p^{3} T^{2} \)
29 \( 1 - 238 T + p^{3} T^{2} \)
31 \( 1 + 180 T + p^{3} T^{2} \)
37 \( 1 - 40 T + p^{3} T^{2} \)
41 \( 1 + 422 T + p^{3} T^{2} \)
43 \( 1 + 276 T + p^{3} T^{2} \)
47 \( 1 - 60 T + p^{3} T^{2} \)
53 \( 1 - 220 T + p^{3} T^{2} \)
59 \( 1 - 804 T + p^{3} T^{2} \)
61 \( 1 + 358 T + p^{3} T^{2} \)
67 \( 1 - 884 T + p^{3} T^{2} \)
71 \( 1 - 64 T + p^{3} T^{2} \)
73 \( 1 - 152 T + p^{3} T^{2} \)
79 \( 1 + 932 T + p^{3} T^{2} \)
83 \( 1 + 1292 T + p^{3} T^{2} \)
89 \( 1 - 1146 T + p^{3} T^{2} \)
97 \( 1 + 824 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.816272318998103215776850042146, −8.235626199424452645130069212563, −7.27697475227374716927976329240, −6.55435607269138196021597965602, −5.70870355398180184234112360009, −4.88914649154145034119750236453, −3.74247901009857336643046164368, −3.13499281964456784756199459777, −1.74267516093272150987586987029, −0.76669269449166719026824587103, 0.76669269449166719026824587103, 1.74267516093272150987586987029, 3.13499281964456784756199459777, 3.74247901009857336643046164368, 4.88914649154145034119750236453, 5.70870355398180184234112360009, 6.55435607269138196021597965602, 7.27697475227374716927976329240, 8.235626199424452645130069212563, 8.816272318998103215776850042146

Graph of the $Z$-function along the critical line