Properties

Label 2-1800-1.1-c3-0-24
Degree $2$
Conductor $1800$
Sign $1$
Analytic cond. $106.203$
Root an. cond. $10.3055$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·7-s − 39·11-s + 84·13-s + 61·17-s + 151·19-s + 58·23-s − 192·29-s − 18·31-s − 138·37-s − 229·41-s − 164·43-s + 212·47-s − 339·49-s − 578·53-s + 336·59-s + 858·61-s − 209·67-s + 780·71-s − 403·73-s − 78·77-s − 230·79-s + 1.29e3·83-s + 1.36e3·89-s + 168·91-s + 382·97-s + 794·101-s − 1.34e3·103-s + ⋯
L(s)  = 1  + 0.107·7-s − 1.06·11-s + 1.79·13-s + 0.870·17-s + 1.82·19-s + 0.525·23-s − 1.22·29-s − 0.104·31-s − 0.613·37-s − 0.872·41-s − 0.581·43-s + 0.657·47-s − 0.988·49-s − 1.49·53-s + 0.741·59-s + 1.80·61-s − 0.381·67-s + 1.30·71-s − 0.646·73-s − 0.115·77-s − 0.327·79-s + 1.70·83-s + 1.63·89-s + 0.193·91-s + 0.399·97-s + 0.782·101-s − 1.28·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1800\)    =    \(2^{3} \cdot 3^{2} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(106.203\)
Root analytic conductor: \(10.3055\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1800,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.425997890\)
\(L(\frac12)\) \(\approx\) \(2.425997890\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 - 2 T + p^{3} T^{2} \)
11 \( 1 + 39 T + p^{3} T^{2} \)
13 \( 1 - 84 T + p^{3} T^{2} \)
17 \( 1 - 61 T + p^{3} T^{2} \)
19 \( 1 - 151 T + p^{3} T^{2} \)
23 \( 1 - 58 T + p^{3} T^{2} \)
29 \( 1 + 192 T + p^{3} T^{2} \)
31 \( 1 + 18 T + p^{3} T^{2} \)
37 \( 1 + 138 T + p^{3} T^{2} \)
41 \( 1 + 229 T + p^{3} T^{2} \)
43 \( 1 + 164 T + p^{3} T^{2} \)
47 \( 1 - 212 T + p^{3} T^{2} \)
53 \( 1 + 578 T + p^{3} T^{2} \)
59 \( 1 - 336 T + p^{3} T^{2} \)
61 \( 1 - 858 T + p^{3} T^{2} \)
67 \( 1 + 209 T + p^{3} T^{2} \)
71 \( 1 - 780 T + p^{3} T^{2} \)
73 \( 1 + 403 T + p^{3} T^{2} \)
79 \( 1 + 230 T + p^{3} T^{2} \)
83 \( 1 - 1293 T + p^{3} T^{2} \)
89 \( 1 - 1369 T + p^{3} T^{2} \)
97 \( 1 - 382 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.878889426657419013543641062115, −8.052690011827743019192469753472, −7.50032109289679748841680785364, −6.50256696396724692577270216045, −5.51204535605905975126701562866, −5.10698663899271908694077123044, −3.63788041321660002683775181232, −3.17939330700458207203193074587, −1.74732386624454406107512523403, −0.76476213121997204688517796851, 0.76476213121997204688517796851, 1.74732386624454406107512523403, 3.17939330700458207203193074587, 3.63788041321660002683775181232, 5.10698663899271908694077123044, 5.51204535605905975126701562866, 6.50256696396724692577270216045, 7.50032109289679748841680785364, 8.052690011827743019192469753472, 8.878889426657419013543641062115

Graph of the $Z$-function along the critical line