Properties

Label 2-1800-1.1-c3-0-20
Degree $2$
Conductor $1800$
Sign $1$
Analytic cond. $106.203$
Root an. cond. $10.3055$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 34·7-s − 16·11-s − 58·13-s − 70·17-s + 4·19-s − 134·23-s + 242·29-s + 100·31-s + 438·37-s + 138·41-s − 178·43-s + 22·47-s + 813·49-s + 162·53-s + 268·59-s + 250·61-s − 422·67-s + 852·71-s − 306·73-s − 544·77-s − 456·79-s + 434·83-s + 726·89-s − 1.97e3·91-s − 1.37e3·97-s − 126·101-s + 1.26e3·103-s + ⋯
L(s)  = 1  + 1.83·7-s − 0.438·11-s − 1.23·13-s − 0.998·17-s + 0.0482·19-s − 1.21·23-s + 1.54·29-s + 0.579·31-s + 1.94·37-s + 0.525·41-s − 0.631·43-s + 0.0682·47-s + 2.37·49-s + 0.419·53-s + 0.591·59-s + 0.524·61-s − 0.769·67-s + 1.42·71-s − 0.490·73-s − 0.805·77-s − 0.649·79-s + 0.573·83-s + 0.864·89-s − 2.27·91-s − 1.44·97-s − 0.124·101-s + 1.20·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1800\)    =    \(2^{3} \cdot 3^{2} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(106.203\)
Root analytic conductor: \(10.3055\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1800,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.422607209\)
\(L(\frac12)\) \(\approx\) \(2.422607209\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 - 34 T + p^{3} T^{2} \)
11 \( 1 + 16 T + p^{3} T^{2} \)
13 \( 1 + 58 T + p^{3} T^{2} \)
17 \( 1 + 70 T + p^{3} T^{2} \)
19 \( 1 - 4 T + p^{3} T^{2} \)
23 \( 1 + 134 T + p^{3} T^{2} \)
29 \( 1 - 242 T + p^{3} T^{2} \)
31 \( 1 - 100 T + p^{3} T^{2} \)
37 \( 1 - 438 T + p^{3} T^{2} \)
41 \( 1 - 138 T + p^{3} T^{2} \)
43 \( 1 + 178 T + p^{3} T^{2} \)
47 \( 1 - 22 T + p^{3} T^{2} \)
53 \( 1 - 162 T + p^{3} T^{2} \)
59 \( 1 - 268 T + p^{3} T^{2} \)
61 \( 1 - 250 T + p^{3} T^{2} \)
67 \( 1 + 422 T + p^{3} T^{2} \)
71 \( 1 - 12 p T + p^{3} T^{2} \)
73 \( 1 + 306 T + p^{3} T^{2} \)
79 \( 1 + 456 T + p^{3} T^{2} \)
83 \( 1 - 434 T + p^{3} T^{2} \)
89 \( 1 - 726 T + p^{3} T^{2} \)
97 \( 1 + 1378 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.714920937004332375989809296385, −8.062064826973896385444177167705, −7.57705332200855523271661116511, −6.57116141015434663179116700405, −5.53215421120834369451555315989, −4.67177149718325533648591936663, −4.31697964555551748513781128304, −2.62791102696623370404111527333, −2.00370736137998008116755274441, −0.73120802362207737469665229099, 0.73120802362207737469665229099, 2.00370736137998008116755274441, 2.62791102696623370404111527333, 4.31697964555551748513781128304, 4.67177149718325533648591936663, 5.53215421120834369451555315989, 6.57116141015434663179116700405, 7.57705332200855523271661116511, 8.062064826973896385444177167705, 8.714920937004332375989809296385

Graph of the $Z$-function along the critical line