Properties

Label 2-1800-1.1-c3-0-0
Degree $2$
Conductor $1800$
Sign $1$
Analytic cond. $106.203$
Root an. cond. $10.3055$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 33.0·7-s − 48.3·11-s − 60.3·13-s + 17.7·17-s − 130.·19-s − 70.8·23-s − 104.·29-s − 210.·31-s + 300.·37-s − 240.·41-s − 108·43-s + 278.·47-s + 750.·49-s − 328.·53-s − 889.·59-s − 241.·61-s + 103.·67-s + 277.·71-s + 274.·73-s + 1.59e3·77-s + 366.·79-s − 57.7·83-s + 203.·89-s + 1.99e3·91-s + 1.28e3·97-s − 886.·101-s − 783.·103-s + ⋯
L(s)  = 1  − 1.78·7-s − 1.32·11-s − 1.28·13-s + 0.253·17-s − 1.58·19-s − 0.642·23-s − 0.669·29-s − 1.21·31-s + 1.33·37-s − 0.914·41-s − 0.383·43-s + 0.865·47-s + 2.18·49-s − 0.851·53-s − 1.96·59-s − 0.506·61-s + 0.189·67-s + 0.464·71-s + 0.439·73-s + 2.36·77-s + 0.522·79-s − 0.0763·83-s + 0.241·89-s + 2.29·91-s + 1.34·97-s − 0.873·101-s − 0.749·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1800\)    =    \(2^{3} \cdot 3^{2} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(106.203\)
Root analytic conductor: \(10.3055\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1800,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.08512353397\)
\(L(\frac12)\) \(\approx\) \(0.08512353397\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + 33.0T + 343T^{2} \)
11 \( 1 + 48.3T + 1.33e3T^{2} \)
13 \( 1 + 60.3T + 2.19e3T^{2} \)
17 \( 1 - 17.7T + 4.91e3T^{2} \)
19 \( 1 + 130.T + 6.85e3T^{2} \)
23 \( 1 + 70.8T + 1.21e4T^{2} \)
29 \( 1 + 104.T + 2.43e4T^{2} \)
31 \( 1 + 210.T + 2.97e4T^{2} \)
37 \( 1 - 300.T + 5.06e4T^{2} \)
41 \( 1 + 240.T + 6.89e4T^{2} \)
43 \( 1 + 108T + 7.95e4T^{2} \)
47 \( 1 - 278.T + 1.03e5T^{2} \)
53 \( 1 + 328.T + 1.48e5T^{2} \)
59 \( 1 + 889.T + 2.05e5T^{2} \)
61 \( 1 + 241.T + 2.26e5T^{2} \)
67 \( 1 - 103.T + 3.00e5T^{2} \)
71 \( 1 - 277.T + 3.57e5T^{2} \)
73 \( 1 - 274.T + 3.89e5T^{2} \)
79 \( 1 - 366.T + 4.93e5T^{2} \)
83 \( 1 + 57.7T + 5.71e5T^{2} \)
89 \( 1 - 203.T + 7.04e5T^{2} \)
97 \( 1 - 1.28e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.124833632226632554576929251784, −7.997083928626377568364561291898, −7.35860093414685745382703628278, −6.47628735740107843876610425498, −5.81195302182022836176206653888, −4.85960270070861601852114090250, −3.80850551897707933163986641038, −2.86946076378990649949009203084, −2.14841320790883430608661676800, −0.12479841809012241260440945060, 0.12479841809012241260440945060, 2.14841320790883430608661676800, 2.86946076378990649949009203084, 3.80850551897707933163986641038, 4.85960270070861601852114090250, 5.81195302182022836176206653888, 6.47628735740107843876610425498, 7.35860093414685745382703628278, 7.997083928626377568364561291898, 9.124833632226632554576929251784

Graph of the $Z$-function along the critical line