| L(s) = 1 | + (40 − 39.0i)5-s + 124. i·7-s + 80·11-s + 374. i·13-s + 546. i·17-s + 12·19-s + 2.03e3i·23-s + (75.0 − 3.12e3i)25-s + 4.56e3·29-s − 344·31-s + (4.87e3 + 4.99e3i)35-s − 4.37e3i·37-s + 1.42e4·41-s + 1.89e4i·43-s + 2.45e4i·47-s + ⋯ |
| L(s) = 1 | + (0.715 − 0.698i)5-s + 0.963i·7-s + 0.199·11-s + 0.615i·13-s + 0.458i·17-s + 0.00762·19-s + 0.800i·23-s + (0.0240 − 0.999i)25-s + 1.00·29-s − 0.0642·31-s + (0.673 + 0.689i)35-s − 0.525i·37-s + 1.32·41-s + 1.56i·43-s + 1.61i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.715 - 0.698i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.715 - 0.698i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(3)\) |
\(\approx\) |
\(2.160153943\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.160153943\) |
| \(L(\frac{7}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-40 + 39.0i)T \) |
| good | 7 | \( 1 - 124. iT - 1.68e4T^{2} \) |
| 11 | \( 1 - 80T + 1.61e5T^{2} \) |
| 13 | \( 1 - 374. iT - 3.71e5T^{2} \) |
| 17 | \( 1 - 546. iT - 1.41e6T^{2} \) |
| 19 | \( 1 - 12T + 2.47e6T^{2} \) |
| 23 | \( 1 - 2.03e3iT - 6.43e6T^{2} \) |
| 29 | \( 1 - 4.56e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + 344T + 2.86e7T^{2} \) |
| 37 | \( 1 + 4.37e3iT - 6.93e7T^{2} \) |
| 41 | \( 1 - 1.42e4T + 1.15e8T^{2} \) |
| 43 | \( 1 - 1.89e4iT - 1.47e8T^{2} \) |
| 47 | \( 1 - 2.45e4iT - 2.29e8T^{2} \) |
| 53 | \( 1 - 2.74e4iT - 4.18e8T^{2} \) |
| 59 | \( 1 - 3.80e4T + 7.14e8T^{2} \) |
| 61 | \( 1 + 8.20e3T + 8.44e8T^{2} \) |
| 67 | \( 1 + 1.32e4iT - 1.35e9T^{2} \) |
| 71 | \( 1 - 4.84e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + 4.24e4iT - 2.07e9T^{2} \) |
| 79 | \( 1 - 9.26e3T + 3.07e9T^{2} \) |
| 83 | \( 1 - 3.34e4iT - 3.93e9T^{2} \) |
| 89 | \( 1 + 2.43e4T + 5.58e9T^{2} \) |
| 97 | \( 1 - 1.36e5iT - 8.58e9T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.07367796741795029133552115982, −10.94736781371061494027060391980, −9.594456587427478983868552526716, −9.053417070806083120433221891367, −7.972213851543689589465888100099, −6.39789183050700820515667307099, −5.55606019748555247702478411566, −4.35626446000563198366405428020, −2.56509623474353642146251131365, −1.29828393778213581644091259787,
0.75695663963673858563771283106, 2.43059818381194239510965387159, 3.76481943805278164227286650819, 5.23173192909360231508550734281, 6.52086347672874051070813537218, 7.30904903336771331826035202470, 8.610290844469607963396679934722, 9.965768940438104500625352254883, 10.45624677069687431765481900585, 11.49353406032626824673228809992