Properties

Label 2-18-9.7-c5-0-0
Degree $2$
Conductor $18$
Sign $-0.973 + 0.228i$
Analytic cond. $2.88690$
Root an. cond. $1.69909$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2 + 3.46i)2-s + (−8.58 + 13.0i)3-s + (−7.99 − 13.8i)4-s + (−39.2 − 67.9i)5-s + (−27.9 − 55.7i)6-s + (−110. + 191. i)7-s + 63.9·8-s + (−95.7 − 223. i)9-s + 313.·10-s + (−115. + 199. i)11-s + (248. + 14.7i)12-s + (385. + 668. i)13-s + (−442. − 766. i)14-s + (1.22e3 + 72.5i)15-s + (−128 + 221. i)16-s − 769.·17-s + ⋯
L(s)  = 1  + (−0.353 + 0.612i)2-s + (−0.550 + 0.834i)3-s + (−0.249 − 0.433i)4-s + (−0.701 − 1.21i)5-s + (−0.316 − 0.632i)6-s + (−0.852 + 1.47i)7-s + 0.353·8-s + (−0.394 − 0.919i)9-s + 0.992·10-s + (−0.286 + 0.496i)11-s + (0.499 + 0.0296i)12-s + (0.633 + 1.09i)13-s + (−0.603 − 1.04i)14-s + (1.40 + 0.0832i)15-s + (−0.125 + 0.216i)16-s − 0.646·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 18 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.973 + 0.228i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 18 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.973 + 0.228i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(18\)    =    \(2 \cdot 3^{2}\)
Sign: $-0.973 + 0.228i$
Analytic conductor: \(2.88690\)
Root analytic conductor: \(1.69909\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{18} (7, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 18,\ (\ :5/2),\ -0.973 + 0.228i)\)

Particular Values

\(L(3)\) \(\approx\) \(0.0397338 - 0.343296i\)
\(L(\frac12)\) \(\approx\) \(0.0397338 - 0.343296i\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (2 - 3.46i)T \)
3 \( 1 + (8.58 - 13.0i)T \)
good5 \( 1 + (39.2 + 67.9i)T + (-1.56e3 + 2.70e3i)T^{2} \)
7 \( 1 + (110. - 191. i)T + (-8.40e3 - 1.45e4i)T^{2} \)
11 \( 1 + (115. - 199. i)T + (-8.05e4 - 1.39e5i)T^{2} \)
13 \( 1 + (-385. - 668. i)T + (-1.85e5 + 3.21e5i)T^{2} \)
17 \( 1 + 769.T + 1.41e6T^{2} \)
19 \( 1 + 383.T + 2.47e6T^{2} \)
23 \( 1 + (193. + 334. i)T + (-3.21e6 + 5.57e6i)T^{2} \)
29 \( 1 + (-394. + 683. i)T + (-1.02e7 - 1.77e7i)T^{2} \)
31 \( 1 + (1.60e3 + 2.78e3i)T + (-1.43e7 + 2.47e7i)T^{2} \)
37 \( 1 - 2.46e3T + 6.93e7T^{2} \)
41 \( 1 + (-4.62e3 - 8.00e3i)T + (-5.79e7 + 1.00e8i)T^{2} \)
43 \( 1 + (5.31e3 - 9.20e3i)T + (-7.35e7 - 1.27e8i)T^{2} \)
47 \( 1 + (976. - 1.69e3i)T + (-1.14e8 - 1.98e8i)T^{2} \)
53 \( 1 + 3.25e4T + 4.18e8T^{2} \)
59 \( 1 + (-1.19e4 - 2.06e4i)T + (-3.57e8 + 6.19e8i)T^{2} \)
61 \( 1 + (1.88e4 - 3.25e4i)T + (-4.22e8 - 7.31e8i)T^{2} \)
67 \( 1 + (-1.15e4 - 1.99e4i)T + (-6.75e8 + 1.16e9i)T^{2} \)
71 \( 1 + 6.60e4T + 1.80e9T^{2} \)
73 \( 1 - 6.51e4T + 2.07e9T^{2} \)
79 \( 1 + (-3.54e4 + 6.13e4i)T + (-1.53e9 - 2.66e9i)T^{2} \)
83 \( 1 + (2.76e4 - 4.78e4i)T + (-1.96e9 - 3.41e9i)T^{2} \)
89 \( 1 - 1.05e4T + 5.58e9T^{2} \)
97 \( 1 + (-4.14e4 + 7.17e4i)T + (-4.29e9 - 7.43e9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−18.13779546372517718252372260423, −16.57129365209708683263168774578, −15.96915799238770267109285130681, −15.12463477000219797347209011207, −12.76934449698440983994196314707, −11.58187056062167237461055623628, −9.475077200999163593879622889209, −8.669307454575246483405434428531, −6.13191726385951281914000296910, −4.56636687833116194394944606844, 0.31637154417658173846555528120, 3.35908639154472099665748651899, 6.66979716421108013218873373971, 7.82908183812986805363425832654, 10.53172286475752414027897064341, 11.06252803263470322855786455432, 12.81795394538978867927819838011, 13.85946471812607869170124908440, 15.91606995175311338214245833678, 17.30555247170247858523707433008

Graph of the $Z$-function along the critical line