L(s) = 1 | + (−1 + 1.73i)2-s + 5.19i·3-s + (−1.99 − 3.46i)4-s + (4.5 + 7.79i)5-s + (−9 − 5.19i)6-s + (15.5 − 26.8i)7-s + 7.99·8-s − 27·9-s − 18·10-s + (7.5 − 12.9i)11-s + (18 − 10.3i)12-s + (18.5 + 32.0i)13-s + (31 + 53.6i)14-s + (−40.5 + 23.3i)15-s + (−8 + 13.8i)16-s − 42·17-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + 0.999i·3-s + (−0.249 − 0.433i)4-s + (0.402 + 0.697i)5-s + (−0.612 − 0.353i)6-s + (0.836 − 1.44i)7-s + 0.353·8-s − 9-s − 0.569·10-s + (0.205 − 0.356i)11-s + (0.433 − 0.249i)12-s + (0.394 + 0.683i)13-s + (0.591 + 1.02i)14-s + (−0.697 + 0.402i)15-s + (−0.125 + 0.216i)16-s − 0.599·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 18 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.173 - 0.984i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 18 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.173 - 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.721181 + 0.605143i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.721181 + 0.605143i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1 - 1.73i)T \) |
| 3 | \( 1 - 5.19iT \) |
good | 5 | \( 1 + (-4.5 - 7.79i)T + (-62.5 + 108. i)T^{2} \) |
| 7 | \( 1 + (-15.5 + 26.8i)T + (-171.5 - 297. i)T^{2} \) |
| 11 | \( 1 + (-7.5 + 12.9i)T + (-665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 + (-18.5 - 32.0i)T + (-1.09e3 + 1.90e3i)T^{2} \) |
| 17 | \( 1 + 42T + 4.91e3T^{2} \) |
| 19 | \( 1 + 28T + 6.85e3T^{2} \) |
| 23 | \( 1 + (97.5 + 168. i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 + (55.5 - 96.1i)T + (-1.21e4 - 2.11e4i)T^{2} \) |
| 31 | \( 1 + (-102.5 - 177. i)T + (-1.48e4 + 2.57e4i)T^{2} \) |
| 37 | \( 1 + 166T + 5.06e4T^{2} \) |
| 41 | \( 1 + (-130.5 - 226. i)T + (-3.44e4 + 5.96e4i)T^{2} \) |
| 43 | \( 1 + (-21.5 + 37.2i)T + (-3.97e4 - 6.88e4i)T^{2} \) |
| 47 | \( 1 + (88.5 - 153. i)T + (-5.19e4 - 8.99e4i)T^{2} \) |
| 53 | \( 1 - 114T + 1.48e5T^{2} \) |
| 59 | \( 1 + (79.5 + 137. i)T + (-1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (95.5 - 165. i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-210.5 - 364. i)T + (-1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 - 156T + 3.57e5T^{2} \) |
| 73 | \( 1 - 182T + 3.89e5T^{2} \) |
| 79 | \( 1 + (566.5 - 981. i)T + (-2.46e5 - 4.26e5i)T^{2} \) |
| 83 | \( 1 + (-541.5 + 937. i)T + (-2.85e5 - 4.95e5i)T^{2} \) |
| 89 | \( 1 + 1.05e3T + 7.04e5T^{2} \) |
| 97 | \( 1 + (-450.5 + 780. i)T + (-4.56e5 - 7.90e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.14228405724161650303447802579, −17.07765926648066177146356404859, −16.13157874639066754573935098721, −14.48447618557902344058107544074, −14.00263829233119909279857834873, −11.03224542513244268239564416890, −10.25633008352779349364677513132, −8.509455018666476487755178860952, −6.60179753450900366957381205288, −4.38699503553042529087882060291,
1.94503011243440762792153454089, 5.60789669161822730948025485554, 8.062690670972476804372231461517, 9.168554738670215362145146658577, 11.42938516121310386509632186967, 12.40302537557065707422760620618, 13.54289523139430969864649595321, 15.29020789404722998881645073590, 17.32899427275944951131865274870, 17.98010892956469024606134947500