L(s) = 1 | + (2.44 + 1.41i)2-s + (−1.67 + 8.84i)3-s + (3.99 + 6.92i)4-s + (6.41 − 3.70i)5-s + (−16.6 + 19.2i)6-s + (30.1 − 52.2i)7-s + 22.6i·8-s + (−75.3 − 29.7i)9-s + 20.9·10-s + (55.2 + 31.8i)11-s + (−67.9 + 23.7i)12-s + (−144. − 251. i)13-s + (147. − 85.3i)14-s + (21.9 + 62.9i)15-s + (−32.0 + 55.4i)16-s + 460. i·17-s + ⋯ |
L(s) = 1 | + (0.612 + 0.353i)2-s + (−0.186 + 0.982i)3-s + (0.249 + 0.433i)4-s + (0.256 − 0.148i)5-s + (−0.461 + 0.535i)6-s + (0.616 − 1.06i)7-s + 0.353i·8-s + (−0.930 − 0.366i)9-s + 0.209·10-s + (0.456 + 0.263i)11-s + (−0.472 + 0.164i)12-s + (−0.857 − 1.48i)13-s + (0.754 − 0.435i)14-s + (0.0976 + 0.279i)15-s + (−0.125 + 0.216i)16-s + 1.59i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 18 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.522 - 0.852i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 18 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (0.522 - 0.852i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(1.39965 + 0.783661i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.39965 + 0.783661i\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-2.44 - 1.41i)T \) |
| 3 | \( 1 + (1.67 - 8.84i)T \) |
good | 5 | \( 1 + (-6.41 + 3.70i)T + (312.5 - 541. i)T^{2} \) |
| 7 | \( 1 + (-30.1 + 52.2i)T + (-1.20e3 - 2.07e3i)T^{2} \) |
| 11 | \( 1 + (-55.2 - 31.8i)T + (7.32e3 + 1.26e4i)T^{2} \) |
| 13 | \( 1 + (144. + 251. i)T + (-1.42e4 + 2.47e4i)T^{2} \) |
| 17 | \( 1 - 460. iT - 8.35e4T^{2} \) |
| 19 | \( 1 - 187.T + 1.30e5T^{2} \) |
| 23 | \( 1 + (35.8 - 20.7i)T + (1.39e5 - 2.42e5i)T^{2} \) |
| 29 | \( 1 + (1.21e3 + 699. i)T + (3.53e5 + 6.12e5i)T^{2} \) |
| 31 | \( 1 + (318. + 551. i)T + (-4.61e5 + 7.99e5i)T^{2} \) |
| 37 | \( 1 - 847.T + 1.87e6T^{2} \) |
| 41 | \( 1 + (438. - 253. i)T + (1.41e6 - 2.44e6i)T^{2} \) |
| 43 | \( 1 + (702. - 1.21e3i)T + (-1.70e6 - 2.96e6i)T^{2} \) |
| 47 | \( 1 + (-2.14e3 - 1.23e3i)T + (2.43e6 + 4.22e6i)T^{2} \) |
| 53 | \( 1 - 773. iT - 7.89e6T^{2} \) |
| 59 | \( 1 + (-3.89e3 + 2.24e3i)T + (6.05e6 - 1.04e7i)T^{2} \) |
| 61 | \( 1 + (-1.30e3 + 2.25e3i)T + (-6.92e6 - 1.19e7i)T^{2} \) |
| 67 | \( 1 + (-1.69e3 - 2.92e3i)T + (-1.00e7 + 1.74e7i)T^{2} \) |
| 71 | \( 1 - 2.77e3iT - 2.54e7T^{2} \) |
| 73 | \( 1 - 3.52e3T + 2.83e7T^{2} \) |
| 79 | \( 1 + (2.91e3 - 5.04e3i)T + (-1.94e7 - 3.37e7i)T^{2} \) |
| 83 | \( 1 + (4.43e3 + 2.56e3i)T + (2.37e7 + 4.11e7i)T^{2} \) |
| 89 | \( 1 + 1.22e3iT - 6.27e7T^{2} \) |
| 97 | \( 1 + (-7.36e3 + 1.27e4i)T + (-4.42e7 - 7.66e7i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.34527156485260331305140593160, −17.03462821531786141297448984789, −15.30500580832450508151855404656, −14.50950401562852958552056091828, −12.96988003478996458713398693831, −11.21057486391577487503924363923, −9.911498780051949482223532652971, −7.81510011025190175749563368848, −5.57339504985227318995248366895, −3.98279971393923136417242305414,
2.18552047483969715815150323590, 5.34350836507070368719130875235, 7.02472971564279392719221851465, 9.143854154715248480620945706870, 11.52426004223574450207932896268, 12.08653959156300982303442217086, 13.77847998313919257376596523736, 14.59990816109401825704119445111, 16.48741817343912861084128337361, 18.10762432180741677667091385787