Properties

Label 2-18-1.1-c25-0-7
Degree $2$
Conductor $18$
Sign $-1$
Analytic cond. $71.2794$
Root an. cond. $8.44271$
Motivic weight $25$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.09e3·2-s + 1.67e7·4-s − 3.41e8·5-s − 4.08e10·7-s + 6.87e10·8-s − 1.39e12·10-s + 1.45e13·11-s + 8.78e13·13-s − 1.67e14·14-s + 2.81e14·16-s + 2.65e15·17-s − 1.39e16·19-s − 5.72e15·20-s + 5.94e16·22-s − 8.58e16·23-s − 1.81e17·25-s + 3.59e17·26-s − 6.85e17·28-s − 2.08e18·29-s + 2.66e18·31-s + 1.15e18·32-s + 1.08e19·34-s + 1.39e19·35-s − 5.13e19·37-s − 5.73e19·38-s − 2.34e19·40-s − 2.33e20·41-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.624·5-s − 1.11·7-s + 0.353·8-s − 0.441·10-s + 1.39·11-s + 1.04·13-s − 0.789·14-s + 1/4·16-s + 1.10·17-s − 1.45·19-s − 0.312·20-s + 0.985·22-s − 0.816·23-s − 0.609·25-s + 0.739·26-s − 0.558·28-s − 1.09·29-s + 0.607·31-s + 0.176·32-s + 0.781·34-s + 0.697·35-s − 1.28·37-s − 1.02·38-s − 0.220·40-s − 1.61·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 18 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(26-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 18 ^{s/2} \, \Gamma_{\C}(s+25/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(18\)    =    \(2 \cdot 3^{2}\)
Sign: $-1$
Analytic conductor: \(71.2794\)
Root analytic conductor: \(8.44271\)
Motivic weight: \(25\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 18,\ (\ :25/2),\ -1)\)

Particular Values

\(L(13)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{27}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p^{12} T \)
3 \( 1 \)
good5 \( 1 + 13640214 p^{2} T + p^{25} T^{2} \)
7 \( 1 + 40882637368 T + p^{25} T^{2} \)
11 \( 1 - 119886135348 p^{2} T + p^{25} T^{2} \)
13 \( 1 - 87843989537006 T + p^{25} T^{2} \)
17 \( 1 - 156201521699214 p T + p^{25} T^{2} \)
19 \( 1 + 736811826531460 p T + p^{25} T^{2} \)
23 \( 1 + 3732729596697192 p T + p^{25} T^{2} \)
29 \( 1 + 2080230429601526910 T + p^{25} T^{2} \)
31 \( 1 - 2663532371302675232 T + p^{25} T^{2} \)
37 \( 1 + 51379607980315436218 T + p^{25} T^{2} \)
41 \( 1 + \)\(23\!\cdots\!22\)\( T + p^{25} T^{2} \)
43 \( 1 + 40133597094729613684 T + p^{25} T^{2} \)
47 \( 1 + \)\(27\!\cdots\!72\)\( T + p^{25} T^{2} \)
53 \( 1 + \)\(42\!\cdots\!26\)\( T + p^{25} T^{2} \)
59 \( 1 - \)\(83\!\cdots\!80\)\( T + p^{25} T^{2} \)
61 \( 1 - \)\(24\!\cdots\!62\)\( T + p^{25} T^{2} \)
67 \( 1 + \)\(12\!\cdots\!28\)\( T + p^{25} T^{2} \)
71 \( 1 - \)\(93\!\cdots\!88\)\( T + p^{25} T^{2} \)
73 \( 1 - \)\(40\!\cdots\!86\)\( T + p^{25} T^{2} \)
79 \( 1 + \)\(80\!\cdots\!80\)\( T + p^{25} T^{2} \)
83 \( 1 + \)\(89\!\cdots\!76\)\( T + p^{25} T^{2} \)
89 \( 1 + \)\(35\!\cdots\!90\)\( T + p^{25} T^{2} \)
97 \( 1 + \)\(86\!\cdots\!18\)\( T + p^{25} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.47918060354774852292990912212, −11.52601097670495176333955062229, −10.01312318243511681098432771062, −8.477575743677921995434183435296, −6.83148953822533445768237621135, −5.92339853459057091927092969215, −4.00824070491925718110060710731, −3.43118583143186629531591111244, −1.59958114214265723002936471344, 0, 1.59958114214265723002936471344, 3.43118583143186629531591111244, 4.00824070491925718110060710731, 5.92339853459057091927092969215, 6.83148953822533445768237621135, 8.477575743677921995434183435296, 10.01312318243511681098432771062, 11.52601097670495176333955062229, 12.47918060354774852292990912212

Graph of the $Z$-function along the critical line