Properties

Label 2-18-1.1-c25-0-1
Degree $2$
Conductor $18$
Sign $1$
Analytic cond. $71.2794$
Root an. cond. $8.44271$
Motivic weight $25$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.09e3·2-s + 1.67e7·4-s + 1.37e8·5-s − 3.04e10·7-s − 6.87e10·8-s − 5.61e11·10-s − 2.58e12·11-s − 9.57e13·13-s + 1.24e14·14-s + 2.81e14·16-s + 1.64e15·17-s + 4.95e15·19-s + 2.29e15·20-s + 1.05e16·22-s + 1.07e16·23-s − 2.79e17·25-s + 3.92e17·26-s − 5.10e17·28-s + 1.36e18·29-s − 4.41e18·31-s − 1.15e18·32-s − 6.74e18·34-s − 4.16e18·35-s + 1.01e19·37-s − 2.02e19·38-s − 9.41e18·40-s − 1.58e20·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s + 0.251·5-s − 0.830·7-s − 0.353·8-s − 0.177·10-s − 0.248·11-s − 1.13·13-s + 0.587·14-s + 0.250·16-s + 0.685·17-s + 0.513·19-s + 0.125·20-s + 0.175·22-s + 0.102·23-s − 0.936·25-s + 0.805·26-s − 0.415·28-s + 0.717·29-s − 1.00·31-s − 0.176·32-s − 0.484·34-s − 0.208·35-s + 0.254·37-s − 0.362·38-s − 0.0887·40-s − 1.09·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 18 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(26-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 18 ^{s/2} \, \Gamma_{\C}(s+25/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(18\)    =    \(2 \cdot 3^{2}\)
Sign: $1$
Analytic conductor: \(71.2794\)
Root analytic conductor: \(8.44271\)
Motivic weight: \(25\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 18,\ (\ :25/2),\ 1)\)

Particular Values

\(L(13)\) \(\approx\) \(1.007250771\)
\(L(\frac12)\) \(\approx\) \(1.007250771\)
\(L(\frac{27}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 4.09e3T \)
3 \( 1 \)
good5 \( 1 - 1.37e8T + 2.98e17T^{2} \)
7 \( 1 + 3.04e10T + 1.34e21T^{2} \)
11 \( 1 + 2.58e12T + 1.08e26T^{2} \)
13 \( 1 + 9.57e13T + 7.05e27T^{2} \)
17 \( 1 - 1.64e15T + 5.77e30T^{2} \)
19 \( 1 - 4.95e15T + 9.30e31T^{2} \)
23 \( 1 - 1.07e16T + 1.10e34T^{2} \)
29 \( 1 - 1.36e18T + 3.63e36T^{2} \)
31 \( 1 + 4.41e18T + 1.92e37T^{2} \)
37 \( 1 - 1.01e19T + 1.60e39T^{2} \)
41 \( 1 + 1.58e20T + 2.08e40T^{2} \)
43 \( 1 - 1.83e20T + 6.86e40T^{2} \)
47 \( 1 + 1.40e21T + 6.34e41T^{2} \)
53 \( 1 - 1.99e21T + 1.27e43T^{2} \)
59 \( 1 - 4.16e21T + 1.86e44T^{2} \)
61 \( 1 - 3.42e22T + 4.29e44T^{2} \)
67 \( 1 - 8.67e22T + 4.48e45T^{2} \)
71 \( 1 - 5.13e22T + 1.91e46T^{2} \)
73 \( 1 - 3.49e22T + 3.82e46T^{2} \)
79 \( 1 - 2.91e23T + 2.75e47T^{2} \)
83 \( 1 - 1.64e24T + 9.48e47T^{2} \)
89 \( 1 + 8.74e23T + 5.42e48T^{2} \)
97 \( 1 - 1.00e25T + 4.66e49T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.96154789154516291696789308609, −11.76747852508582952478656255176, −10.16480568573335293048442514129, −9.462021871151880350361058659983, −7.894258507363011768835935329992, −6.70512306033698209449863210976, −5.30424348819325161259777202821, −3.35808716527520320718013534778, −2.10503367000393694134246411881, −0.56008546852882636750370691766, 0.56008546852882636750370691766, 2.10503367000393694134246411881, 3.35808716527520320718013534778, 5.30424348819325161259777202821, 6.70512306033698209449863210976, 7.894258507363011768835935329992, 9.462021871151880350361058659983, 10.16480568573335293048442514129, 11.76747852508582952478656255176, 12.96154789154516291696789308609

Graph of the $Z$-function along the critical line