Properties

Label 2-17e2-1.1-c9-0-111
Degree $2$
Conductor $289$
Sign $1$
Analytic cond. $148.845$
Root an. cond. $12.2002$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 16.2·2-s + 276.·3-s − 248.·4-s − 1.63e3·5-s − 4.48e3·6-s + 8.49e3·7-s + 1.23e4·8-s + 5.66e4·9-s + 2.65e4·10-s + 4.61e4·11-s − 6.86e4·12-s + 4.70e4·13-s − 1.37e5·14-s − 4.52e5·15-s − 7.31e4·16-s − 9.18e5·18-s + 1.92e5·19-s + 4.07e5·20-s + 2.34e6·21-s − 7.49e5·22-s + 1.30e6·23-s + 3.40e6·24-s + 7.31e5·25-s − 7.64e5·26-s + 1.01e7·27-s − 2.11e6·28-s + 3.14e6·29-s + ⋯
L(s)  = 1  − 0.717·2-s + 1.96·3-s − 0.485·4-s − 1.17·5-s − 1.41·6-s + 1.33·7-s + 1.06·8-s + 2.87·9-s + 0.840·10-s + 0.951·11-s − 0.955·12-s + 0.457·13-s − 0.959·14-s − 2.30·15-s − 0.278·16-s − 2.06·18-s + 0.338·19-s + 0.569·20-s + 2.63·21-s − 0.682·22-s + 0.975·23-s + 2.09·24-s + 0.374·25-s − 0.328·26-s + 3.69·27-s − 0.649·28-s + 0.826·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 289 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 289 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(289\)    =    \(17^{2}\)
Sign: $1$
Analytic conductor: \(148.845\)
Root analytic conductor: \(12.2002\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: $\chi_{289} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 289,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(3.625857437\)
\(L(\frac12)\) \(\approx\) \(3.625857437\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad17 \( 1 \)
good2 \( 1 + 16.2T + 512T^{2} \)
3 \( 1 - 276.T + 1.96e4T^{2} \)
5 \( 1 + 1.63e3T + 1.95e6T^{2} \)
7 \( 1 - 8.49e3T + 4.03e7T^{2} \)
11 \( 1 - 4.61e4T + 2.35e9T^{2} \)
13 \( 1 - 4.70e4T + 1.06e10T^{2} \)
19 \( 1 - 1.92e5T + 3.22e11T^{2} \)
23 \( 1 - 1.30e6T + 1.80e12T^{2} \)
29 \( 1 - 3.14e6T + 1.45e13T^{2} \)
31 \( 1 - 3.13e6T + 2.64e13T^{2} \)
37 \( 1 + 7.07e6T + 1.29e14T^{2} \)
41 \( 1 - 3.58e6T + 3.27e14T^{2} \)
43 \( 1 - 2.56e7T + 5.02e14T^{2} \)
47 \( 1 + 4.61e7T + 1.11e15T^{2} \)
53 \( 1 - 7.23e7T + 3.29e15T^{2} \)
59 \( 1 + 6.44e7T + 8.66e15T^{2} \)
61 \( 1 + 1.13e8T + 1.16e16T^{2} \)
67 \( 1 - 3.92e7T + 2.72e16T^{2} \)
71 \( 1 + 8.04e7T + 4.58e16T^{2} \)
73 \( 1 + 2.91e8T + 5.88e16T^{2} \)
79 \( 1 + 5.23e8T + 1.19e17T^{2} \)
83 \( 1 + 3.13e8T + 1.86e17T^{2} \)
89 \( 1 + 6.56e8T + 3.50e17T^{2} \)
97 \( 1 - 1.11e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.859176190842465753312108500712, −8.801906935522772962691201050427, −8.540291536816418386141615400810, −7.75247374738801083018061311948, −7.14529514226501606691075804910, −4.62339913242918760271235176623, −4.13369332515389325191370766012, −3.11713274676314580795691418983, −1.63031319029433481866130420484, −0.986568766262637519192058198308, 0.986568766262637519192058198308, 1.63031319029433481866130420484, 3.11713274676314580795691418983, 4.13369332515389325191370766012, 4.62339913242918760271235176623, 7.14529514226501606691075804910, 7.75247374738801083018061311948, 8.540291536816418386141615400810, 8.801906935522772962691201050427, 9.859176190842465753312108500712

Graph of the $Z$-function along the critical line