Properties

Label 2-17e2-1.1-c3-0-53
Degree $2$
Conductor $289$
Sign $-1$
Analytic cond. $17.0515$
Root an. cond. $4.12935$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.227·2-s + 8.23·3-s − 7.94·4-s + 2.75·5-s + 1.87·6-s − 21.5·7-s − 3.63·8-s + 40.8·9-s + 0.626·10-s − 54.5·11-s − 65.4·12-s − 52.4·13-s − 4.90·14-s + 22.6·15-s + 62.7·16-s + 9.31·18-s − 19.6·19-s − 21.8·20-s − 177.·21-s − 12.4·22-s − 13.9·23-s − 29.9·24-s − 117.·25-s − 11.9·26-s + 114.·27-s + 171.·28-s − 70.0·29-s + ⋯
L(s)  = 1  + 0.0805·2-s + 1.58·3-s − 0.993·4-s + 0.246·5-s + 0.127·6-s − 1.16·7-s − 0.160·8-s + 1.51·9-s + 0.0198·10-s − 1.49·11-s − 1.57·12-s − 1.11·13-s − 0.0936·14-s + 0.390·15-s + 0.980·16-s + 0.121·18-s − 0.237·19-s − 0.244·20-s − 1.84·21-s − 0.120·22-s − 0.126·23-s − 0.254·24-s − 0.939·25-s − 0.0902·26-s + 0.815·27-s + 1.15·28-s − 0.448·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 289 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 289 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(289\)    =    \(17^{2}\)
Sign: $-1$
Analytic conductor: \(17.0515\)
Root analytic conductor: \(4.12935\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 289,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad17 \( 1 \)
good2 \( 1 - 0.227T + 8T^{2} \)
3 \( 1 - 8.23T + 27T^{2} \)
5 \( 1 - 2.75T + 125T^{2} \)
7 \( 1 + 21.5T + 343T^{2} \)
11 \( 1 + 54.5T + 1.33e3T^{2} \)
13 \( 1 + 52.4T + 2.19e3T^{2} \)
19 \( 1 + 19.6T + 6.85e3T^{2} \)
23 \( 1 + 13.9T + 1.21e4T^{2} \)
29 \( 1 + 70.0T + 2.43e4T^{2} \)
31 \( 1 - 167.T + 2.97e4T^{2} \)
37 \( 1 + 198.T + 5.06e4T^{2} \)
41 \( 1 - 434.T + 6.89e4T^{2} \)
43 \( 1 + 127.T + 7.95e4T^{2} \)
47 \( 1 - 207.T + 1.03e5T^{2} \)
53 \( 1 - 312.T + 1.48e5T^{2} \)
59 \( 1 + 576.T + 2.05e5T^{2} \)
61 \( 1 + 78.3T + 2.26e5T^{2} \)
67 \( 1 + 359.T + 3.00e5T^{2} \)
71 \( 1 - 213.T + 3.57e5T^{2} \)
73 \( 1 - 29.0T + 3.89e5T^{2} \)
79 \( 1 + 855.T + 4.93e5T^{2} \)
83 \( 1 - 13.6T + 5.71e5T^{2} \)
89 \( 1 + 651.T + 7.04e5T^{2} \)
97 \( 1 - 1.19e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.31061198015101676946120161048, −9.771599860831218389070432067517, −9.085867252535256590985416747097, −8.103470613941702047583939995062, −7.36166463822212989203209777305, −5.74169250777063201584768053264, −4.45150824708205712483916662329, −3.26309476058344674878165990297, −2.40543195498166811251681261515, 0, 2.40543195498166811251681261515, 3.26309476058344674878165990297, 4.45150824708205712483916662329, 5.74169250777063201584768053264, 7.36166463822212989203209777305, 8.103470613941702047583939995062, 9.085867252535256590985416747097, 9.771599860831218389070432067517, 10.31061198015101676946120161048

Graph of the $Z$-function along the critical line