Properties

Label 2-17e2-1.1-c3-0-43
Degree $2$
Conductor $289$
Sign $-1$
Analytic cond. $17.0515$
Root an. cond. $4.12935$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.07·2-s + 5.02·3-s − 6.85·4-s − 4.32·5-s − 5.37·6-s − 4.44·7-s + 15.9·8-s − 1.79·9-s + 4.63·10-s + 68.9·11-s − 34.4·12-s − 27.1·13-s + 4.76·14-s − 21.7·15-s + 37.7·16-s + 1.92·18-s − 123.·19-s + 29.6·20-s − 22.3·21-s − 73.8·22-s − 98.6·23-s + 79.8·24-s − 106.·25-s + 29.1·26-s − 144.·27-s + 30.4·28-s − 21.9·29-s + ⋯
L(s)  = 1  − 0.378·2-s + 0.966·3-s − 0.856·4-s − 0.386·5-s − 0.365·6-s − 0.240·7-s + 0.703·8-s − 0.0666·9-s + 0.146·10-s + 1.89·11-s − 0.827·12-s − 0.580·13-s + 0.0909·14-s − 0.373·15-s + 0.590·16-s + 0.0252·18-s − 1.49·19-s + 0.331·20-s − 0.231·21-s − 0.715·22-s − 0.894·23-s + 0.679·24-s − 0.850·25-s + 0.219·26-s − 1.03·27-s + 0.205·28-s − 0.140·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 289 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 289 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(289\)    =    \(17^{2}\)
Sign: $-1$
Analytic conductor: \(17.0515\)
Root analytic conductor: \(4.12935\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 289,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad17 \( 1 \)
good2 \( 1 + 1.07T + 8T^{2} \)
3 \( 1 - 5.02T + 27T^{2} \)
5 \( 1 + 4.32T + 125T^{2} \)
7 \( 1 + 4.44T + 343T^{2} \)
11 \( 1 - 68.9T + 1.33e3T^{2} \)
13 \( 1 + 27.1T + 2.19e3T^{2} \)
19 \( 1 + 123.T + 6.85e3T^{2} \)
23 \( 1 + 98.6T + 1.21e4T^{2} \)
29 \( 1 + 21.9T + 2.43e4T^{2} \)
31 \( 1 + 241.T + 2.97e4T^{2} \)
37 \( 1 + 324.T + 5.06e4T^{2} \)
41 \( 1 - 164.T + 6.89e4T^{2} \)
43 \( 1 - 383.T + 7.95e4T^{2} \)
47 \( 1 - 411.T + 1.03e5T^{2} \)
53 \( 1 + 380.T + 1.48e5T^{2} \)
59 \( 1 - 63.3T + 2.05e5T^{2} \)
61 \( 1 - 37.1T + 2.26e5T^{2} \)
67 \( 1 + 48.2T + 3.00e5T^{2} \)
71 \( 1 + 672.T + 3.57e5T^{2} \)
73 \( 1 + 562.T + 3.89e5T^{2} \)
79 \( 1 - 461.T + 4.93e5T^{2} \)
83 \( 1 - 972.T + 5.71e5T^{2} \)
89 \( 1 - 16.0T + 7.04e5T^{2} \)
97 \( 1 + 598.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.72397954041437808390348829424, −9.485564241336014803089092068659, −9.071333279892593275986575817198, −8.257089469587002254314172203679, −7.29242022310052385078250297462, −5.94828856336420709573710012188, −4.24956837226630134131245431077, −3.65879524289308241778556071881, −1.87972748143915294414097184787, 0, 1.87972748143915294414097184787, 3.65879524289308241778556071881, 4.24956837226630134131245431077, 5.94828856336420709573710012188, 7.29242022310052385078250297462, 8.257089469587002254314172203679, 9.071333279892593275986575817198, 9.485564241336014803089092068659, 10.72397954041437808390348829424

Graph of the $Z$-function along the critical line