Properties

Label 2-17e2-1.1-c3-0-28
Degree $2$
Conductor $289$
Sign $-1$
Analytic cond. $17.0515$
Root an. cond. $4.12935$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.86·2-s − 5.06·3-s + 15.6·4-s + 18.5·5-s + 24.6·6-s − 14.0·7-s − 37.1·8-s − 1.34·9-s − 90.2·10-s − 19.4·11-s − 79.2·12-s + 29.9·13-s + 68.1·14-s − 94.0·15-s + 55.3·16-s + 6.51·18-s − 45.7·19-s + 290.·20-s + 71.0·21-s + 94.7·22-s + 89.3·23-s + 188.·24-s + 219.·25-s − 145.·26-s + 143.·27-s − 219.·28-s − 57.9·29-s + ⋯
L(s)  = 1  − 1.71·2-s − 0.974·3-s + 1.95·4-s + 1.66·5-s + 1.67·6-s − 0.757·7-s − 1.64·8-s − 0.0496·9-s − 2.85·10-s − 0.533·11-s − 1.90·12-s + 0.638·13-s + 1.30·14-s − 1.61·15-s + 0.865·16-s + 0.0853·18-s − 0.552·19-s + 3.24·20-s + 0.738·21-s + 0.917·22-s + 0.809·23-s + 1.59·24-s + 1.75·25-s − 1.09·26-s + 1.02·27-s − 1.47·28-s − 0.370·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 289 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 289 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(289\)    =    \(17^{2}\)
Sign: $-1$
Analytic conductor: \(17.0515\)
Root analytic conductor: \(4.12935\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 289,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad17 \( 1 \)
good2 \( 1 + 4.86T + 8T^{2} \)
3 \( 1 + 5.06T + 27T^{2} \)
5 \( 1 - 18.5T + 125T^{2} \)
7 \( 1 + 14.0T + 343T^{2} \)
11 \( 1 + 19.4T + 1.33e3T^{2} \)
13 \( 1 - 29.9T + 2.19e3T^{2} \)
19 \( 1 + 45.7T + 6.85e3T^{2} \)
23 \( 1 - 89.3T + 1.21e4T^{2} \)
29 \( 1 + 57.9T + 2.43e4T^{2} \)
31 \( 1 + 161.T + 2.97e4T^{2} \)
37 \( 1 - 135.T + 5.06e4T^{2} \)
41 \( 1 - 56.8T + 6.89e4T^{2} \)
43 \( 1 - 52.1T + 7.95e4T^{2} \)
47 \( 1 + 482.T + 1.03e5T^{2} \)
53 \( 1 + 529.T + 1.48e5T^{2} \)
59 \( 1 + 280.T + 2.05e5T^{2} \)
61 \( 1 - 586.T + 2.26e5T^{2} \)
67 \( 1 - 367.T + 3.00e5T^{2} \)
71 \( 1 + 60.5T + 3.57e5T^{2} \)
73 \( 1 - 368.T + 3.89e5T^{2} \)
79 \( 1 + 217.T + 4.93e5T^{2} \)
83 \( 1 + 594.T + 5.71e5T^{2} \)
89 \( 1 + 887.T + 7.04e5T^{2} \)
97 \( 1 - 884.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.77451631596123964724994294089, −9.820847124462820235234877256152, −9.299798087978079145846850056020, −8.280247688443618612949452240452, −6.79530610942899082938959039772, −6.22907983840361446796642802277, −5.32340549503406808511212071406, −2.72257208992771570984289301690, −1.41697803216526841253758566484, 0, 1.41697803216526841253758566484, 2.72257208992771570984289301690, 5.32340549503406808511212071406, 6.22907983840361446796642802277, 6.79530610942899082938959039772, 8.280247688443618612949452240452, 9.299798087978079145846850056020, 9.820847124462820235234877256152, 10.77451631596123964724994294089

Graph of the $Z$-function along the critical line