Properties

Label 2-1792-16.5-c1-0-45
Degree $2$
Conductor $1792$
Sign $-0.991 + 0.130i$
Analytic cond. $14.3091$
Root an. cond. $3.78274$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (2.04 − 2.04i)3-s + (−0.701 − 0.701i)5-s + i·7-s − 5.33i·9-s + (−2.41 − 2.41i)11-s + (−1.96 + 1.96i)13-s − 2.86·15-s − 6.93·17-s + (1.38 − 1.38i)19-s + (2.04 + 2.04i)21-s + 2.05i·23-s − 4.01i·25-s + (−4.76 − 4.76i)27-s + (5.34 − 5.34i)29-s − 5.23·31-s + ⋯
L(s)  = 1  + (1.17 − 1.17i)3-s + (−0.313 − 0.313i)5-s + 0.377i·7-s − 1.77i·9-s + (−0.729 − 0.729i)11-s + (−0.543 + 0.543i)13-s − 0.739·15-s − 1.68·17-s + (0.318 − 0.318i)19-s + (0.445 + 0.445i)21-s + 0.428i·23-s − 0.803i·25-s + (−0.917 − 0.917i)27-s + (0.992 − 0.992i)29-s − 0.940·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1792 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.991 + 0.130i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1792 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.991 + 0.130i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1792\)    =    \(2^{8} \cdot 7\)
Sign: $-0.991 + 0.130i$
Analytic conductor: \(14.3091\)
Root analytic conductor: \(3.78274\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1792} (449, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1792,\ (\ :1/2),\ -0.991 + 0.130i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.415352862\)
\(L(\frac12)\) \(\approx\) \(1.415352862\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - iT \)
good3 \( 1 + (-2.04 + 2.04i)T - 3iT^{2} \)
5 \( 1 + (0.701 + 0.701i)T + 5iT^{2} \)
11 \( 1 + (2.41 + 2.41i)T + 11iT^{2} \)
13 \( 1 + (1.96 - 1.96i)T - 13iT^{2} \)
17 \( 1 + 6.93T + 17T^{2} \)
19 \( 1 + (-1.38 + 1.38i)T - 19iT^{2} \)
23 \( 1 - 2.05iT - 23T^{2} \)
29 \( 1 + (-5.34 + 5.34i)T - 29iT^{2} \)
31 \( 1 + 5.23T + 31T^{2} \)
37 \( 1 + (6.58 + 6.58i)T + 37iT^{2} \)
41 \( 1 + 0.949iT - 41T^{2} \)
43 \( 1 + (5.95 + 5.95i)T + 43iT^{2} \)
47 \( 1 + 4.64T + 47T^{2} \)
53 \( 1 + (-7.24 - 7.24i)T + 53iT^{2} \)
59 \( 1 + (-8.58 - 8.58i)T + 59iT^{2} \)
61 \( 1 + (-2.81 + 2.81i)T - 61iT^{2} \)
67 \( 1 + (-9.07 + 9.07i)T - 67iT^{2} \)
71 \( 1 - 3.60iT - 71T^{2} \)
73 \( 1 + 6.53iT - 73T^{2} \)
79 \( 1 + 13.7T + 79T^{2} \)
83 \( 1 + (4.49 - 4.49i)T - 83iT^{2} \)
89 \( 1 + 0.428iT - 89T^{2} \)
97 \( 1 - 14.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.646682926728684630700226483687, −8.309270378905132263725985697993, −7.32136305283398708117209290020, −6.84111050955709751412857916587, −5.82698660501789950570947781896, −4.70559166928297398114534251651, −3.62825483133612015492425465098, −2.54650402702799650070124374917, −2.01084827792303306880701711998, −0.40730664045489495769674583090, 2.06620647736905845879983592135, 2.99472914009794801532212336644, 3.70192614911776012667064102860, 4.70609862251854342377261453624, 5.13102893091435190569249635297, 6.77509843826101922579480712494, 7.37929861212491226084053110943, 8.365417838041062870133655782827, 8.737002507824913871251766467063, 9.905216938025299006379219616583

Graph of the $Z$-function along the critical line