L(s) = 1 | + 2.31i·2-s + 5.19·3-s + 10.6·4-s − 38.6·5-s + 12.0i·6-s + 9.48·7-s + 61.7i·8-s + 27·9-s − 89.6i·10-s − 58.4i·11-s + 55.1·12-s + 290. i·13-s + 22.0i·14-s − 200.·15-s + 26.7·16-s − 467.·17-s + ⋯ |
L(s) = 1 | + 0.579i·2-s + 0.577·3-s + 0.663·4-s − 1.54·5-s + 0.334i·6-s + 0.193·7-s + 0.964i·8-s + 0.333·9-s − 0.896i·10-s − 0.483i·11-s + 0.383·12-s + 1.72i·13-s + 0.112i·14-s − 0.892·15-s + 0.104·16-s − 1.61·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.951 - 0.308i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.951 - 0.308i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(1.226051441\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.226051441\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - 5.19T \) |
| 59 | \( 1 + (-3.31e3 - 1.07e3i)T \) |
good | 2 | \( 1 - 2.31iT - 16T^{2} \) |
| 5 | \( 1 + 38.6T + 625T^{2} \) |
| 7 | \( 1 - 9.48T + 2.40e3T^{2} \) |
| 11 | \( 1 + 58.4iT - 1.46e4T^{2} \) |
| 13 | \( 1 - 290. iT - 2.85e4T^{2} \) |
| 17 | \( 1 + 467.T + 8.35e4T^{2} \) |
| 19 | \( 1 + 261.T + 1.30e5T^{2} \) |
| 23 | \( 1 - 190. iT - 2.79e5T^{2} \) |
| 29 | \( 1 + 407.T + 7.07e5T^{2} \) |
| 31 | \( 1 - 1.89e3iT - 9.23e5T^{2} \) |
| 37 | \( 1 + 306. iT - 1.87e6T^{2} \) |
| 41 | \( 1 + 486.T + 2.82e6T^{2} \) |
| 43 | \( 1 + 1.83e3iT - 3.41e6T^{2} \) |
| 47 | \( 1 + 1.57e3iT - 4.87e6T^{2} \) |
| 53 | \( 1 + 2.71e3T + 7.89e6T^{2} \) |
| 61 | \( 1 - 3.95e3iT - 1.38e7T^{2} \) |
| 67 | \( 1 - 5.26e3iT - 2.01e7T^{2} \) |
| 71 | \( 1 - 7.35e3T + 2.54e7T^{2} \) |
| 73 | \( 1 + 8.25e3iT - 2.83e7T^{2} \) |
| 79 | \( 1 - 8.38e3T + 3.89e7T^{2} \) |
| 83 | \( 1 + 8.21e3iT - 4.74e7T^{2} \) |
| 89 | \( 1 - 1.36e4iT - 6.27e7T^{2} \) |
| 97 | \( 1 - 5.34e3iT - 8.85e7T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.23879526762393826969249484009, −11.43743539232052382427287570354, −10.82264357692458777715863882807, −8.901321465658751806253164053513, −8.358950790259317451515806895184, −7.18783111408458813584462099827, −6.62479092535978975144336481490, −4.71049827281431532120802053314, −3.61364631698954893454446383922, −2.01265740823429642947135743960,
0.39000500222057168139181876293, 2.29312079033087916755719874759, 3.47238963151532784121071468532, 4.50519099405619102739880339377, 6.51038407182432642002179184467, 7.68113486305372587141701567579, 8.221489896747402903112409707386, 9.704053806703094777701693177437, 10.93427207750465555844376346868, 11.34504845327129548863548831292