L(s) = 1 | + 3.44i·2-s + 5.19·3-s + 4.13·4-s − 16.2·5-s + 17.8i·6-s + 92.6·7-s + 69.3i·8-s + 27·9-s − 55.8i·10-s − 48.6i·11-s + 21.4·12-s − 216. i·13-s + 319. i·14-s − 84.2·15-s − 172.·16-s + 171.·17-s + ⋯ |
L(s) = 1 | + 0.861i·2-s + 0.577·3-s + 0.258·4-s − 0.648·5-s + 0.497i·6-s + 1.89·7-s + 1.08i·8-s + 0.333·9-s − 0.558i·10-s − 0.402i·11-s + 0.149·12-s − 1.28i·13-s + 1.62i·14-s − 0.374·15-s − 0.674·16-s + 0.595·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.380 - 0.924i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (0.380 - 0.924i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(2.951791422\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.951791422\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - 5.19T \) |
| 59 | \( 1 + (1.32e3 - 3.21e3i)T \) |
good | 2 | \( 1 - 3.44iT - 16T^{2} \) |
| 5 | \( 1 + 16.2T + 625T^{2} \) |
| 7 | \( 1 - 92.6T + 2.40e3T^{2} \) |
| 11 | \( 1 + 48.6iT - 1.46e4T^{2} \) |
| 13 | \( 1 + 216. iT - 2.85e4T^{2} \) |
| 17 | \( 1 - 171.T + 8.35e4T^{2} \) |
| 19 | \( 1 - 267.T + 1.30e5T^{2} \) |
| 23 | \( 1 - 734. iT - 2.79e5T^{2} \) |
| 29 | \( 1 - 999.T + 7.07e5T^{2} \) |
| 31 | \( 1 + 568. iT - 9.23e5T^{2} \) |
| 37 | \( 1 - 1.00e3iT - 1.87e6T^{2} \) |
| 41 | \( 1 + 2.30e3T + 2.82e6T^{2} \) |
| 43 | \( 1 - 2.15e3iT - 3.41e6T^{2} \) |
| 47 | \( 1 + 1.19e3iT - 4.87e6T^{2} \) |
| 53 | \( 1 + 1.10e3T + 7.89e6T^{2} \) |
| 61 | \( 1 - 4.03e3iT - 1.38e7T^{2} \) |
| 67 | \( 1 + 8.14e3iT - 2.01e7T^{2} \) |
| 71 | \( 1 + 2.53e3T + 2.54e7T^{2} \) |
| 73 | \( 1 + 792. iT - 2.83e7T^{2} \) |
| 79 | \( 1 + 3.21e3T + 3.89e7T^{2} \) |
| 83 | \( 1 + 1.05e4iT - 4.74e7T^{2} \) |
| 89 | \( 1 + 226. iT - 6.27e7T^{2} \) |
| 97 | \( 1 + 7.28e3iT - 8.85e7T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.88327838981620228917109730329, −11.42195818160967401764990038324, −10.26145974486809096769086047169, −8.558119221833397062801938525444, −7.85698380138212189678866266721, −7.52043497710961496882641536757, −5.74870158100831431997199258974, −4.80858751530189630704542926255, −3.13477294046757327043974937941, −1.44789491188125595659176555425,
1.30029760786146231123233349979, 2.30438911309978091747184993273, 3.87340998228927634232739615994, 4.82955825930004608710697116615, 6.87588082701924746806575716622, 7.81726455143429108531892661870, 8.743570801739397991353187844789, 10.05531934135324804116618361706, 11.03177108757163207335201421940, 11.82476878246842232938120063623