Properties

Label 2-177-59.51-c1-0-6
Degree $2$
Conductor $177$
Sign $0.590 + 0.806i$
Analytic cond. $1.41335$
Root an. cond. $1.18884$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.0194 − 0.118i)2-s + (0.267 − 0.963i)3-s + (1.88 + 0.633i)4-s + (−1.57 − 2.32i)5-s + (−0.109 − 0.0504i)6-s + (1.03 − 0.228i)7-s + (0.224 − 0.423i)8-s + (−0.856 − 0.515i)9-s + (−0.306 + 0.142i)10-s + (−0.225 + 0.171i)11-s + (1.11 − 1.64i)12-s + (0.273 − 0.164i)13-s + (−0.00692 − 0.127i)14-s + (−2.66 + 0.898i)15-s + (3.11 + 2.36i)16-s + (0.728 + 0.160i)17-s + ⋯
L(s)  = 1  + (0.0137 − 0.0839i)2-s + (0.154 − 0.556i)3-s + (0.940 + 0.316i)4-s + (−0.705 − 1.04i)5-s + (−0.0445 − 0.0206i)6-s + (0.392 − 0.0863i)7-s + (0.0793 − 0.149i)8-s + (−0.285 − 0.171i)9-s + (−0.0970 + 0.0449i)10-s + (−0.0680 + 0.0517i)11-s + (0.321 − 0.474i)12-s + (0.0759 − 0.0457i)13-s + (−0.00184 − 0.0341i)14-s + (−0.688 + 0.231i)15-s + (0.778 + 0.592i)16-s + (0.176 + 0.0388i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.590 + 0.806i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.590 + 0.806i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(177\)    =    \(3 \cdot 59\)
Sign: $0.590 + 0.806i$
Analytic conductor: \(1.41335\)
Root analytic conductor: \(1.18884\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{177} (169, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 177,\ (\ :1/2),\ 0.590 + 0.806i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.20467 - 0.610859i\)
\(L(\frac12)\) \(\approx\) \(1.20467 - 0.610859i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-0.267 + 0.963i)T \)
59 \( 1 + (-4.51 + 6.21i)T \)
good2 \( 1 + (-0.0194 + 0.118i)T + (-1.89 - 0.638i)T^{2} \)
5 \( 1 + (1.57 + 2.32i)T + (-1.85 + 4.64i)T^{2} \)
7 \( 1 + (-1.03 + 0.228i)T + (6.35 - 2.93i)T^{2} \)
11 \( 1 + (0.225 - 0.171i)T + (2.94 - 10.5i)T^{2} \)
13 \( 1 + (-0.273 + 0.164i)T + (6.08 - 11.4i)T^{2} \)
17 \( 1 + (-0.728 - 0.160i)T + (15.4 + 7.13i)T^{2} \)
19 \( 1 + (2.09 - 0.228i)T + (18.5 - 4.08i)T^{2} \)
23 \( 1 + (-4.27 - 5.03i)T + (-3.72 + 22.6i)T^{2} \)
29 \( 1 + (-0.142 - 0.870i)T + (-27.4 + 9.25i)T^{2} \)
31 \( 1 + (8.02 + 0.872i)T + (30.2 + 6.66i)T^{2} \)
37 \( 1 + (-2.76 - 5.21i)T + (-20.7 + 30.6i)T^{2} \)
41 \( 1 + (5.00 - 5.88i)T + (-6.63 - 40.4i)T^{2} \)
43 \( 1 + (-7.12 - 5.41i)T + (11.5 + 41.4i)T^{2} \)
47 \( 1 + (4.51 - 6.65i)T + (-17.3 - 43.6i)T^{2} \)
53 \( 1 + (7.81 + 3.61i)T + (34.3 + 40.3i)T^{2} \)
61 \( 1 + (0.0621 - 0.379i)T + (-57.8 - 19.4i)T^{2} \)
67 \( 1 + (-5.29 + 9.98i)T + (-37.5 - 55.4i)T^{2} \)
71 \( 1 + (-3.19 + 4.71i)T + (-26.2 - 65.9i)T^{2} \)
73 \( 1 + (0.658 + 12.1i)T + (-72.5 + 7.89i)T^{2} \)
79 \( 1 + (2.62 + 9.43i)T + (-67.6 + 40.7i)T^{2} \)
83 \( 1 + (-5.69 - 5.39i)T + (4.49 + 82.8i)T^{2} \)
89 \( 1 + (0.335 + 2.04i)T + (-84.3 + 28.4i)T^{2} \)
97 \( 1 + (0.218 - 4.03i)T + (-96.4 - 10.4i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.60713057461710340497557590587, −11.60264032404904257591071012061, −10.99014098960588802969236921867, −9.356610144325041572349221078711, −8.137508073041888989192393265450, −7.62243741568081146429905441493, −6.35613093467699599730228148070, −4.87212624481663295358918052588, −3.34372053248028078771039780752, −1.53963738354308464159027612965, 2.47000565749625422618449060306, 3.74895070048317998626919465500, 5.36525402563054752531442907929, 6.71080965802670179262337237021, 7.51216850762547093770137604045, 8.728119170282564657768365332418, 10.20375554975404599233594963068, 10.94861728764431283083636165014, 11.44995778078783809539466762136, 12.66614853936593133095501489503

Graph of the $Z$-function along the critical line