Properties

Label 2-177-59.46-c1-0-0
Degree $2$
Conductor $177$
Sign $-0.709 - 0.704i$
Analytic cond. $1.41335$
Root an. cond. $1.18884$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.08 + 1.28i)2-s + (−0.796 + 0.605i)3-s + (−0.134 + 0.818i)4-s + (−1.86 + 3.52i)5-s + (−1.64 − 0.361i)6-s + (−3.71 + 0.404i)7-s + (1.68 − 1.01i)8-s + (0.267 − 0.963i)9-s + (−6.54 + 1.44i)10-s + (5.42 − 1.82i)11-s + (−0.388 − 0.733i)12-s + (1.34 + 4.85i)13-s + (−4.56 − 4.32i)14-s + (−0.644 − 3.93i)15-s + (4.71 + 1.58i)16-s + (0.313 + 0.0341i)17-s + ⋯
L(s)  = 1  + (0.770 + 0.906i)2-s + (−0.459 + 0.349i)3-s + (−0.0671 + 0.409i)4-s + (−0.834 + 1.57i)5-s + (−0.670 − 0.147i)6-s + (−1.40 + 0.152i)7-s + (0.596 − 0.358i)8-s + (0.0891 − 0.321i)9-s + (−2.07 + 0.455i)10-s + (1.63 − 0.551i)11-s + (−0.112 − 0.211i)12-s + (0.374 + 1.34i)13-s + (−1.21 − 1.15i)14-s + (−0.166 − 1.01i)15-s + (1.17 + 0.396i)16-s + (0.0761 + 0.00828i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.709 - 0.704i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.709 - 0.704i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(177\)    =    \(3 \cdot 59\)
Sign: $-0.709 - 0.704i$
Analytic conductor: \(1.41335\)
Root analytic conductor: \(1.18884\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{177} (46, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 177,\ (\ :1/2),\ -0.709 - 0.704i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.477681 + 1.15812i\)
\(L(\frac12)\) \(\approx\) \(0.477681 + 1.15812i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (0.796 - 0.605i)T \)
59 \( 1 + (-7.30 + 2.37i)T \)
good2 \( 1 + (-1.08 - 1.28i)T + (-0.323 + 1.97i)T^{2} \)
5 \( 1 + (1.86 - 3.52i)T + (-2.80 - 4.13i)T^{2} \)
7 \( 1 + (3.71 - 0.404i)T + (6.83 - 1.50i)T^{2} \)
11 \( 1 + (-5.42 + 1.82i)T + (8.75 - 6.65i)T^{2} \)
13 \( 1 + (-1.34 - 4.85i)T + (-11.1 + 6.70i)T^{2} \)
17 \( 1 + (-0.313 - 0.0341i)T + (16.6 + 3.65i)T^{2} \)
19 \( 1 + (0.0262 + 0.483i)T + (-18.8 + 2.05i)T^{2} \)
23 \( 1 + (-2.19 - 1.01i)T + (14.8 + 17.5i)T^{2} \)
29 \( 1 + (0.0575 - 0.0677i)T + (-4.69 - 28.6i)T^{2} \)
31 \( 1 + (-0.229 + 4.23i)T + (-30.8 - 3.35i)T^{2} \)
37 \( 1 + (2.38 + 1.43i)T + (17.3 + 32.6i)T^{2} \)
41 \( 1 + (2.90 - 1.34i)T + (26.5 - 31.2i)T^{2} \)
43 \( 1 + (-4.42 - 1.49i)T + (34.2 + 26.0i)T^{2} \)
47 \( 1 + (1.44 + 2.72i)T + (-26.3 + 38.9i)T^{2} \)
53 \( 1 + (-7.10 - 1.56i)T + (48.1 + 22.2i)T^{2} \)
61 \( 1 + (5.67 + 6.67i)T + (-9.86 + 60.1i)T^{2} \)
67 \( 1 + (7.03 - 4.23i)T + (31.3 - 59.1i)T^{2} \)
71 \( 1 + (-5.48 - 10.3i)T + (-39.8 + 58.7i)T^{2} \)
73 \( 1 + (4.48 + 4.25i)T + (3.95 + 72.8i)T^{2} \)
79 \( 1 + (5.92 + 4.50i)T + (21.1 + 76.1i)T^{2} \)
83 \( 1 + (-5.93 + 14.8i)T + (-60.2 - 57.0i)T^{2} \)
89 \( 1 + (-8.27 + 9.73i)T + (-14.3 - 87.8i)T^{2} \)
97 \( 1 + (4.20 - 3.98i)T + (5.25 - 96.8i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.37566157228420204515916588187, −11.94340735903851752142749804641, −11.27718227113240436593271608949, −10.18089593521313286829188148193, −9.102520205561482114690704208917, −7.21073999600596691360488858011, −6.56067011288150997715194319220, −6.10614323565301876862147406473, −4.11398116570834590503389600478, −3.46524061945891481361983484236, 1.09114968819912772078076449822, 3.41982655217137074459108438110, 4.32730131475232931551919157355, 5.53768643405208293340167843537, 7.00127429593526948183316443227, 8.305843624727473501208450094689, 9.420617380067657363908767300372, 10.64656530823801678008290010586, 11.92742511550485944471441560271, 12.30665725956519024863908968312

Graph of the $Z$-function along the critical line