Properties

Label 2-177-59.15-c1-0-2
Degree $2$
Conductor $177$
Sign $0.586 - 0.809i$
Analytic cond. $1.41335$
Root an. cond. $1.18884$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.756 + 0.0822i)2-s + (−0.647 − 0.762i)3-s + (−1.38 + 0.305i)4-s + (−0.128 + 0.0978i)5-s + (0.552 + 0.523i)6-s + (1.18 + 2.96i)7-s + (2.46 − 0.830i)8-s + (−0.161 + 0.986i)9-s + (0.0892 − 0.0845i)10-s + (3.21 + 1.48i)11-s + (1.13 + 0.860i)12-s + (0.653 + 3.98i)13-s + (−1.13 − 2.14i)14-s + (0.157 + 0.0347i)15-s + (0.784 − 0.362i)16-s + (0.702 − 1.76i)17-s + ⋯
L(s)  = 1  + (−0.534 + 0.0581i)2-s + (−0.373 − 0.440i)3-s + (−0.694 + 0.152i)4-s + (−0.0575 + 0.0437i)5-s + (0.225 + 0.213i)6-s + (0.447 + 1.12i)7-s + (0.871 − 0.293i)8-s + (−0.0539 + 0.328i)9-s + (0.0282 − 0.0267i)10-s + (0.968 + 0.448i)11-s + (0.326 + 0.248i)12-s + (0.181 + 1.10i)13-s + (−0.304 − 0.573i)14-s + (0.0407 + 0.00897i)15-s + (0.196 − 0.0907i)16-s + (0.170 − 0.427i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.586 - 0.809i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.586 - 0.809i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(177\)    =    \(3 \cdot 59\)
Sign: $0.586 - 0.809i$
Analytic conductor: \(1.41335\)
Root analytic conductor: \(1.18884\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{177} (133, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 177,\ (\ :1/2),\ 0.586 - 0.809i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.609508 + 0.311154i\)
\(L(\frac12)\) \(\approx\) \(0.609508 + 0.311154i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (0.647 + 0.762i)T \)
59 \( 1 + (7.64 + 0.694i)T \)
good2 \( 1 + (0.756 - 0.0822i)T + (1.95 - 0.429i)T^{2} \)
5 \( 1 + (0.128 - 0.0978i)T + (1.33 - 4.81i)T^{2} \)
7 \( 1 + (-1.18 - 2.96i)T + (-5.08 + 4.81i)T^{2} \)
11 \( 1 + (-3.21 - 1.48i)T + (7.12 + 8.38i)T^{2} \)
13 \( 1 + (-0.653 - 3.98i)T + (-12.3 + 4.15i)T^{2} \)
17 \( 1 + (-0.702 + 1.76i)T + (-12.3 - 11.6i)T^{2} \)
19 \( 1 + (2.07 - 3.05i)T + (-7.03 - 17.6i)T^{2} \)
23 \( 1 + (0.0779 + 1.43i)T + (-22.8 + 2.48i)T^{2} \)
29 \( 1 + (0.693 + 0.0754i)T + (28.3 + 6.23i)T^{2} \)
31 \( 1 + (-0.294 - 0.433i)T + (-11.4 + 28.7i)T^{2} \)
37 \( 1 + (1.54 + 0.522i)T + (29.4 + 22.3i)T^{2} \)
41 \( 1 + (-0.240 + 4.43i)T + (-40.7 - 4.43i)T^{2} \)
43 \( 1 + (-6.48 + 3.00i)T + (27.8 - 32.7i)T^{2} \)
47 \( 1 + (-4.38 - 3.33i)T + (12.5 + 45.2i)T^{2} \)
53 \( 1 + (5.47 + 5.18i)T + (2.86 + 52.9i)T^{2} \)
61 \( 1 + (7.22 - 0.785i)T + (59.5 - 13.1i)T^{2} \)
67 \( 1 + (-14.4 + 4.87i)T + (53.3 - 40.5i)T^{2} \)
71 \( 1 + (-12.6 - 9.58i)T + (18.9 + 68.4i)T^{2} \)
73 \( 1 + (4.49 + 8.48i)T + (-40.9 + 60.4i)T^{2} \)
79 \( 1 + (1.88 - 2.22i)T + (-12.7 - 77.9i)T^{2} \)
83 \( 1 + (-12.0 - 7.23i)T + (38.8 + 73.3i)T^{2} \)
89 \( 1 + (8.57 + 0.932i)T + (86.9 + 19.1i)T^{2} \)
97 \( 1 + (-2.76 + 5.20i)T + (-54.4 - 80.2i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.56828615568053470100777166893, −11.97925199071592079299802149053, −10.94798435366321481518455644116, −9.489133224540680113504296562666, −8.923032115222711053855093898556, −7.84030771963657971571030063981, −6.67066395670400381310608148343, −5.35328327622596500129665922368, −4.08614675522171576642157576897, −1.76831719726917112588830881620, 0.901293179278284022495949381305, 3.80472154763217329796391425482, 4.73957991518514160697103035927, 6.12064965939952553611787691668, 7.63129060625691694293331829363, 8.567503466848677279646348870310, 9.632040844407891273876628524415, 10.56968542786746995723825275596, 11.12622500152534789603859282856, 12.54322028569670899718938320255

Graph of the $Z$-function along the critical line