Properties

Label 2-177-3.2-c2-0-35
Degree $2$
Conductor $177$
Sign $-0.976 - 0.217i$
Analytic cond. $4.82290$
Root an. cond. $2.19611$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 2.79i·2-s + (0.651 − 2.92i)3-s − 3.81·4-s − 4.04i·5-s + (−8.18 − 1.82i)6-s + 6.95·7-s − 0.509i·8-s + (−8.15 − 3.81i)9-s − 11.3·10-s + 3.60i·11-s + (−2.48 + 11.1i)12-s + 6.03·13-s − 19.4i·14-s + (−11.8 − 2.63i)15-s − 16.6·16-s + 27.5i·17-s + ⋯
L(s)  = 1  − 1.39i·2-s + (0.217 − 0.976i)3-s − 0.954·4-s − 0.808i·5-s + (−1.36 − 0.303i)6-s + 0.993·7-s − 0.0636i·8-s + (−0.905 − 0.423i)9-s − 1.13·10-s + 0.327i·11-s + (−0.207 + 0.931i)12-s + 0.463·13-s − 1.38i·14-s + (−0.789 − 0.175i)15-s − 1.04·16-s + 1.62i·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.976 - 0.217i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.976 - 0.217i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(177\)    =    \(3 \cdot 59\)
Sign: $-0.976 - 0.217i$
Analytic conductor: \(4.82290\)
Root analytic conductor: \(2.19611\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{177} (119, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 177,\ (\ :1),\ -0.976 - 0.217i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.182300 + 1.65998i\)
\(L(\frac12)\) \(\approx\) \(0.182300 + 1.65998i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-0.651 + 2.92i)T \)
59 \( 1 - 7.68iT \)
good2 \( 1 + 2.79iT - 4T^{2} \)
5 \( 1 + 4.04iT - 25T^{2} \)
7 \( 1 - 6.95T + 49T^{2} \)
11 \( 1 - 3.60iT - 121T^{2} \)
13 \( 1 - 6.03T + 169T^{2} \)
17 \( 1 - 27.5iT - 289T^{2} \)
19 \( 1 - 11.5T + 361T^{2} \)
23 \( 1 + 6.63iT - 529T^{2} \)
29 \( 1 - 7.59iT - 841T^{2} \)
31 \( 1 - 40.0T + 961T^{2} \)
37 \( 1 + 53.5T + 1.36e3T^{2} \)
41 \( 1 + 33.0iT - 1.68e3T^{2} \)
43 \( 1 + 19.3T + 1.84e3T^{2} \)
47 \( 1 + 51.4iT - 2.20e3T^{2} \)
53 \( 1 + 40.9iT - 2.80e3T^{2} \)
61 \( 1 - 48.9T + 3.72e3T^{2} \)
67 \( 1 - 85.3T + 4.48e3T^{2} \)
71 \( 1 + 32.2iT - 5.04e3T^{2} \)
73 \( 1 - 71.6T + 5.32e3T^{2} \)
79 \( 1 + 85.8T + 6.24e3T^{2} \)
83 \( 1 - 131. iT - 6.88e3T^{2} \)
89 \( 1 + 96.1iT - 7.92e3T^{2} \)
97 \( 1 + 80.8T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.05122745732307749224625300764, −11.19593446572248560819502303321, −10.19007549063417340344684111765, −8.782047456079929974864771492753, −8.212858369023795067834565123958, −6.72488924293090972201610804296, −5.12952592119713461433428358457, −3.69883813627867991391803631952, −2.02792484230151286249533864160, −1.10922538316966126789794824765, 2.93094416412700754803819381035, 4.64425939036767659079000552477, 5.49521843333468464130186124480, 6.77152634788859122937962262723, 7.83827573707144839121365773146, 8.670335317977843355696857675980, 9.788511250940223609792103981599, 11.07061955784256383632760738088, 11.57803527058354110989532413886, 13.93412855019559765774762958467

Graph of the $Z$-function along the critical line