Properties

Label 2-177-177.104-c2-0-4
Degree $2$
Conductor $177$
Sign $-0.913 + 0.406i$
Analytic cond. $4.82290$
Root an. cond. $2.19611$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.30 + 2.16i)2-s + (−2.33 + 1.88i)3-s + (−1.12 + 2.12i)4-s + (0.380 + 3.50i)5-s + (−7.13 − 2.59i)6-s + (−11.3 + 3.83i)7-s + (4.04 − 0.219i)8-s + (1.87 − 8.80i)9-s + (−7.09 + 5.39i)10-s + (5.10 + 3.45i)11-s + (−1.38 − 7.06i)12-s + (−12.9 − 12.2i)13-s + (−23.1 − 19.6i)14-s + (−7.49 − 7.44i)15-s + (11.1 + 16.4i)16-s + (−8.29 + 24.6i)17-s + ⋯
L(s)  = 1  + (0.652 + 1.08i)2-s + (−0.777 + 0.629i)3-s + (−0.281 + 0.530i)4-s + (0.0761 + 0.700i)5-s + (−1.18 − 0.432i)6-s + (−1.62 + 0.548i)7-s + (0.505 − 0.0273i)8-s + (0.208 − 0.978i)9-s + (−0.709 + 0.539i)10-s + (0.463 + 0.314i)11-s + (−0.115 − 0.588i)12-s + (−0.992 − 0.940i)13-s + (−1.65 − 1.40i)14-s + (−0.499 − 0.496i)15-s + (0.695 + 1.02i)16-s + (−0.487 + 1.44i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.913 + 0.406i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.913 + 0.406i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(177\)    =    \(3 \cdot 59\)
Sign: $-0.913 + 0.406i$
Analytic conductor: \(4.82290\)
Root analytic conductor: \(2.19611\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{177} (104, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 177,\ (\ :1),\ -0.913 + 0.406i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.230643 - 1.08486i\)
\(L(\frac12)\) \(\approx\) \(0.230643 - 1.08486i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (2.33 - 1.88i)T \)
59 \( 1 + (-3.85 - 58.8i)T \)
good2 \( 1 + (-1.30 - 2.16i)T + (-1.87 + 3.53i)T^{2} \)
5 \( 1 + (-0.380 - 3.50i)T + (-24.4 + 5.37i)T^{2} \)
7 \( 1 + (11.3 - 3.83i)T + (39.0 - 29.6i)T^{2} \)
11 \( 1 + (-5.10 - 3.45i)T + (44.7 + 112. i)T^{2} \)
13 \( 1 + (12.9 + 12.2i)T + (9.14 + 168. i)T^{2} \)
17 \( 1 + (8.29 - 24.6i)T + (-230. - 174. i)T^{2} \)
19 \( 1 + (1.18 + 7.24i)T + (-342. + 115. i)T^{2} \)
23 \( 1 + (4.36 - 1.21i)T + (453. - 272. i)T^{2} \)
29 \( 1 + (0.602 - 1.00i)T + (-393. - 743. i)T^{2} \)
31 \( 1 + (8.00 - 48.8i)T + (-910. - 306. i)T^{2} \)
37 \( 1 + (-1.62 + 30.0i)T + (-1.36e3 - 148. i)T^{2} \)
41 \( 1 + (-17.9 - 4.97i)T + (1.44e3 + 866. i)T^{2} \)
43 \( 1 + (-42.8 - 63.1i)T + (-684. + 1.71e3i)T^{2} \)
47 \( 1 + (4.67 - 42.9i)T + (-2.15e3 - 474. i)T^{2} \)
53 \( 1 + (28.3 - 37.2i)T + (-751. - 2.70e3i)T^{2} \)
61 \( 1 + (21.1 - 12.7i)T + (1.74e3 - 3.28e3i)T^{2} \)
67 \( 1 + (3.80 + 70.1i)T + (-4.46e3 + 485. i)T^{2} \)
71 \( 1 + (-0.880 + 8.09i)T + (-4.92e3 - 1.08e3i)T^{2} \)
73 \( 1 + (-31.5 + 37.1i)T + (-862. - 5.25e3i)T^{2} \)
79 \( 1 + (3.46 - 8.70i)T + (-4.53e3 - 4.29e3i)T^{2} \)
83 \( 1 + (21.0 + 45.4i)T + (-4.45e3 + 5.25e3i)T^{2} \)
89 \( 1 + (-89.4 + 148. i)T + (-3.71e3 - 6.99e3i)T^{2} \)
97 \( 1 + (-52.1 - 61.3i)T + (-1.52e3 + 9.28e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.76752415390149252732497075730, −12.53981329026186766200287837081, −10.80608718210821544273400109541, −10.17308705342387548792138683080, −9.099550720339442900602944741302, −7.30166084851045708520502000714, −6.37193247084981544500126776413, −5.90165500408911481311830573982, −4.56077987744528049361970377730, −3.19290552149893777098189385607, 0.57981421179920001292334413878, 2.38456586425430235044610860766, 3.97500200831139970496059139877, 5.10322395868818704809633548290, 6.55123165072132904435425692576, 7.40132287038346503694940389417, 9.301565371672138945150780887262, 10.09904068091741236158564069329, 11.32280343612995616334677367660, 12.03000141936595681871334440065

Graph of the $Z$-function along the critical line