Properties

Label 2-177-177.101-c1-0-5
Degree $2$
Conductor $177$
Sign $0.827 - 0.561i$
Analytic cond. $1.41335$
Root an. cond. $1.18884$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.460 − 0.679i)2-s + (−1.72 − 0.0951i)3-s + (0.490 + 1.23i)4-s + (−0.472 + 1.02i)5-s + (−0.861 + 1.13i)6-s + (0.500 + 1.80i)7-s + (2.66 + 0.587i)8-s + (2.98 + 0.328i)9-s + (0.475 + 0.791i)10-s + (1.67 + 1.58i)11-s + (−0.731 − 2.17i)12-s + (−0.00701 + 0.0645i)13-s + (1.45 + 0.490i)14-s + (0.913 − 1.72i)15-s + (−0.297 + 0.281i)16-s + (−1.12 − 0.311i)17-s + ⋯
L(s)  = 1  + (0.325 − 0.480i)2-s + (−0.998 − 0.0549i)3-s + (0.245 + 0.615i)4-s + (−0.211 + 0.456i)5-s + (−0.351 + 0.461i)6-s + (0.189 + 0.681i)7-s + (0.942 + 0.207i)8-s + (0.993 + 0.109i)9-s + (0.150 + 0.250i)10-s + (0.503 + 0.477i)11-s + (−0.211 − 0.628i)12-s + (−0.00194 + 0.0178i)13-s + (0.389 + 0.131i)14-s + (0.235 − 0.444i)15-s + (−0.0743 + 0.0704i)16-s + (−0.272 − 0.0755i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.827 - 0.561i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.827 - 0.561i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(177\)    =    \(3 \cdot 59\)
Sign: $0.827 - 0.561i$
Analytic conductor: \(1.41335\)
Root analytic conductor: \(1.18884\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{177} (101, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 177,\ (\ :1/2),\ 0.827 - 0.561i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.05128 + 0.322962i\)
\(L(\frac12)\) \(\approx\) \(1.05128 + 0.322962i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (1.72 + 0.0951i)T \)
59 \( 1 + (-7.53 - 1.49i)T \)
good2 \( 1 + (-0.460 + 0.679i)T + (-0.740 - 1.85i)T^{2} \)
5 \( 1 + (0.472 - 1.02i)T + (-3.23 - 3.81i)T^{2} \)
7 \( 1 + (-0.500 - 1.80i)T + (-5.99 + 3.60i)T^{2} \)
11 \( 1 + (-1.67 - 1.58i)T + (0.595 + 10.9i)T^{2} \)
13 \( 1 + (0.00701 - 0.0645i)T + (-12.6 - 2.79i)T^{2} \)
17 \( 1 + (1.12 + 0.311i)T + (14.5 + 8.76i)T^{2} \)
19 \( 1 + (2.84 + 2.16i)T + (5.08 + 18.3i)T^{2} \)
23 \( 1 + (0.0691 + 0.130i)T + (-12.9 + 19.0i)T^{2} \)
29 \( 1 + (-4.18 + 2.83i)T + (10.7 - 26.9i)T^{2} \)
31 \( 1 + (1.05 + 1.38i)T + (-8.29 + 29.8i)T^{2} \)
37 \( 1 + (1.76 + 8.01i)T + (-33.5 + 15.5i)T^{2} \)
41 \( 1 + (-3.40 - 1.80i)T + (23.0 + 33.9i)T^{2} \)
43 \( 1 + (7.42 + 7.83i)T + (-2.32 + 42.9i)T^{2} \)
47 \( 1 + (5.61 - 2.59i)T + (30.4 - 35.8i)T^{2} \)
53 \( 1 + (-4.90 + 8.16i)T + (-24.8 - 46.8i)T^{2} \)
61 \( 1 + (-5.16 - 3.49i)T + (22.5 + 56.6i)T^{2} \)
67 \( 1 + (-0.0126 + 0.0576i)T + (-60.8 - 28.1i)T^{2} \)
71 \( 1 + (0.791 + 1.71i)T + (-45.9 + 54.1i)T^{2} \)
73 \( 1 + (-3.52 + 10.4i)T + (-58.1 - 44.1i)T^{2} \)
79 \( 1 + (0.795 - 14.6i)T + (-78.5 - 8.54i)T^{2} \)
83 \( 1 + (-1.95 + 11.9i)T + (-78.6 - 26.5i)T^{2} \)
89 \( 1 + (9.17 + 13.5i)T + (-32.9 + 82.6i)T^{2} \)
97 \( 1 + (-4.38 - 12.9i)T + (-77.2 + 58.7i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.53784502840843623062931438463, −11.74144066511329541634311417735, −11.18369833527530003791173958845, −10.19694290951506587848512590404, −8.738759660016756120841184130411, −7.35812187672877078152987799075, −6.54195126891709513971524681568, −5.07072446082841323772659098015, −3.90087004714297475796861249129, −2.19828098043571355092894589505, 1.18465539678530899731673503558, 4.18348399046105882587947709980, 5.06961654448859368002105306340, 6.26287513386453059206388563636, 6.97477715433849254498267597975, 8.359512849415554723611797412019, 9.924210979969269110873419148377, 10.69283670994144495725694722854, 11.52695004623396180408687353125, 12.59834148430243746272286028816

Graph of the $Z$-function along the critical line