Properties

Label 2-177-177.101-c1-0-14
Degree $2$
Conductor $177$
Sign $-0.196 + 0.980i$
Analytic cond. $1.41335$
Root an. cond. $1.18884$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.19 − 1.76i)2-s + (−1.23 + 1.21i)3-s + (−0.944 − 2.37i)4-s + (1.15 − 2.49i)5-s + (0.654 + 3.63i)6-s + (−0.389 − 1.40i)7-s + (−1.15 − 0.253i)8-s + (0.0695 − 2.99i)9-s + (−3.02 − 5.02i)10-s + (0.430 + 0.407i)11-s + (4.04 + 1.79i)12-s + (−0.374 + 3.44i)13-s + (−2.94 − 0.992i)14-s + (1.59 + 4.48i)15-s + (1.88 − 1.78i)16-s + (−3.11 − 0.866i)17-s + ⋯
L(s)  = 1  + (0.846 − 1.24i)2-s + (−0.715 + 0.698i)3-s + (−0.472 − 1.18i)4-s + (0.516 − 1.11i)5-s + (0.267 + 1.48i)6-s + (−0.147 − 0.530i)7-s + (−0.407 − 0.0895i)8-s + (0.0231 − 0.999i)9-s + (−0.956 − 1.58i)10-s + (0.129 + 0.122i)11-s + (1.16 + 0.517i)12-s + (−0.103 + 0.955i)13-s + (−0.787 − 0.265i)14-s + (0.410 + 1.15i)15-s + (0.470 − 0.445i)16-s + (−0.756 − 0.210i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.196 + 0.980i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.196 + 0.980i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(177\)    =    \(3 \cdot 59\)
Sign: $-0.196 + 0.980i$
Analytic conductor: \(1.41335\)
Root analytic conductor: \(1.18884\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{177} (101, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 177,\ (\ :1/2),\ -0.196 + 0.980i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.951159 - 1.16126i\)
\(L(\frac12)\) \(\approx\) \(0.951159 - 1.16126i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (1.23 - 1.21i)T \)
59 \( 1 + (7.44 + 1.88i)T \)
good2 \( 1 + (-1.19 + 1.76i)T + (-0.740 - 1.85i)T^{2} \)
5 \( 1 + (-1.15 + 2.49i)T + (-3.23 - 3.81i)T^{2} \)
7 \( 1 + (0.389 + 1.40i)T + (-5.99 + 3.60i)T^{2} \)
11 \( 1 + (-0.430 - 0.407i)T + (0.595 + 10.9i)T^{2} \)
13 \( 1 + (0.374 - 3.44i)T + (-12.6 - 2.79i)T^{2} \)
17 \( 1 + (3.11 + 0.866i)T + (14.5 + 8.76i)T^{2} \)
19 \( 1 + (0.0531 + 0.0403i)T + (5.08 + 18.3i)T^{2} \)
23 \( 1 + (-4.20 - 7.92i)T + (-12.9 + 19.0i)T^{2} \)
29 \( 1 + (2.04 - 1.38i)T + (10.7 - 26.9i)T^{2} \)
31 \( 1 + (-5.98 - 7.87i)T + (-8.29 + 29.8i)T^{2} \)
37 \( 1 + (-0.456 - 2.07i)T + (-33.5 + 15.5i)T^{2} \)
41 \( 1 + (8.45 + 4.48i)T + (23.0 + 33.9i)T^{2} \)
43 \( 1 + (1.74 + 1.84i)T + (-2.32 + 42.9i)T^{2} \)
47 \( 1 + (3.32 - 1.53i)T + (30.4 - 35.8i)T^{2} \)
53 \( 1 + (-4.94 + 8.21i)T + (-24.8 - 46.8i)T^{2} \)
61 \( 1 + (5.87 + 3.98i)T + (22.5 + 56.6i)T^{2} \)
67 \( 1 + (2.31 - 10.5i)T + (-60.8 - 28.1i)T^{2} \)
71 \( 1 + (-1.17 - 2.54i)T + (-45.9 + 54.1i)T^{2} \)
73 \( 1 + (-3.15 + 9.37i)T + (-58.1 - 44.1i)T^{2} \)
79 \( 1 + (-0.882 + 16.2i)T + (-78.5 - 8.54i)T^{2} \)
83 \( 1 + (2.35 - 14.3i)T + (-78.6 - 26.5i)T^{2} \)
89 \( 1 + (-3.37 - 4.97i)T + (-32.9 + 82.6i)T^{2} \)
97 \( 1 + (-3.60 - 10.7i)T + (-77.2 + 58.7i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.22419321354814871256463027134, −11.60295691157387534765544344431, −10.65702936117606704555458914438, −9.716447460545379808285964160301, −8.952796505472111173085791683761, −6.83280912528526994362657329334, −5.26741567002617779793581584593, −4.68530242032662153708852409756, −3.55123939197027081624371275445, −1.44874772816131957202400852067, 2.67413251131681920184695572666, 4.70005756761076489099471757783, 5.95924008810170369412672316015, 6.38589284932927063144369609935, 7.31431567930432932275669189299, 8.406854501961785086110813412009, 10.23495034823913787358898919910, 11.07034786911672385062944523998, 12.37353195070349438673923205836, 13.20336732523513014920939827779

Graph of the $Z$-function along the critical line