L(s) = 1 | − 35.8·2-s + 81·3-s + 773.·4-s + 1.88e3·5-s − 2.90e3·6-s − 9.73e3·7-s − 9.35e3·8-s + 6.56e3·9-s − 6.74e4·10-s − 6.16e4·11-s + 6.26e4·12-s + 1.69e5·13-s + 3.49e5·14-s + 1.52e5·15-s − 6.03e4·16-s + 5.60e5·17-s − 2.35e5·18-s − 6.59e5·19-s + 1.45e6·20-s − 7.88e5·21-s + 2.20e6·22-s − 5.35e5·23-s − 7.58e5·24-s + 1.58e6·25-s − 6.09e6·26-s + 5.31e5·27-s − 7.52e6·28-s + ⋯ |
L(s) = 1 | − 1.58·2-s + 0.577·3-s + 1.50·4-s + 1.34·5-s − 0.914·6-s − 1.53·7-s − 0.807·8-s + 0.333·9-s − 2.13·10-s − 1.26·11-s + 0.871·12-s + 1.65·13-s + 2.42·14-s + 0.777·15-s − 0.230·16-s + 1.62·17-s − 0.528·18-s − 1.16·19-s + 2.03·20-s − 0.885·21-s + 2.01·22-s − 0.399·23-s − 0.466·24-s + 0.811·25-s − 2.61·26-s + 0.192·27-s − 2.31·28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(5)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{11}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - 81T \) |
| 59 | \( 1 - 1.21e7T \) |
good | 2 | \( 1 + 35.8T + 512T^{2} \) |
| 5 | \( 1 - 1.88e3T + 1.95e6T^{2} \) |
| 7 | \( 1 + 9.73e3T + 4.03e7T^{2} \) |
| 11 | \( 1 + 6.16e4T + 2.35e9T^{2} \) |
| 13 | \( 1 - 1.69e5T + 1.06e10T^{2} \) |
| 17 | \( 1 - 5.60e5T + 1.18e11T^{2} \) |
| 19 | \( 1 + 6.59e5T + 3.22e11T^{2} \) |
| 23 | \( 1 + 5.35e5T + 1.80e12T^{2} \) |
| 29 | \( 1 - 1.76e6T + 1.45e13T^{2} \) |
| 31 | \( 1 + 7.35e6T + 2.64e13T^{2} \) |
| 37 | \( 1 + 1.11e7T + 1.29e14T^{2} \) |
| 41 | \( 1 - 9.17e6T + 3.27e14T^{2} \) |
| 43 | \( 1 - 1.27e7T + 5.02e14T^{2} \) |
| 47 | \( 1 - 7.13e6T + 1.11e15T^{2} \) |
| 53 | \( 1 + 1.07e8T + 3.29e15T^{2} \) |
| 61 | \( 1 + 2.18e7T + 1.16e16T^{2} \) |
| 67 | \( 1 - 3.04e8T + 2.72e16T^{2} \) |
| 71 | \( 1 + 2.46e8T + 4.58e16T^{2} \) |
| 73 | \( 1 + 9.89e7T + 5.88e16T^{2} \) |
| 79 | \( 1 + 1.89e7T + 1.19e17T^{2} \) |
| 83 | \( 1 + 3.82e8T + 1.86e17T^{2} \) |
| 89 | \( 1 - 8.54e8T + 3.50e17T^{2} \) |
| 97 | \( 1 - 1.05e9T + 7.60e17T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.22548122816380581976637401980, −9.503338481368873628008749673642, −8.745969514667716660657796068595, −7.76353927154633557407048731893, −6.51661634446445038042991563437, −5.73814399657382586221977459580, −3.42291068132849781568495360730, −2.34025153946217258887890814080, −1.29842084976226338949339927403, 0,
1.29842084976226338949339927403, 2.34025153946217258887890814080, 3.42291068132849781568495360730, 5.73814399657382586221977459580, 6.51661634446445038042991563437, 7.76353927154633557407048731893, 8.745969514667716660657796068595, 9.503338481368873628008749673642, 10.22548122816380581976637401980