L(s) = 1 | + 4.75·2-s + 9·3-s − 9.40·4-s − 8.06·5-s + 42.7·6-s − 28.8·7-s − 196.·8-s + 81·9-s − 38.3·10-s + 556.·11-s − 84.6·12-s − 1.12e3·13-s − 137.·14-s − 72.6·15-s − 634.·16-s + 447.·17-s + 385.·18-s − 1.35e3·19-s + 75.8·20-s − 259.·21-s + 2.64e3·22-s − 4.46e3·23-s − 1.77e3·24-s − 3.05e3·25-s − 5.36e3·26-s + 729·27-s + 271.·28-s + ⋯ |
L(s) = 1 | + 0.840·2-s + 0.577·3-s − 0.293·4-s − 0.144·5-s + 0.485·6-s − 0.222·7-s − 1.08·8-s + 0.333·9-s − 0.121·10-s + 1.38·11-s − 0.169·12-s − 1.85·13-s − 0.187·14-s − 0.0833·15-s − 0.619·16-s + 0.375·17-s + 0.280·18-s − 0.858·19-s + 0.0424·20-s − 0.128·21-s + 1.16·22-s − 1.76·23-s − 0.627·24-s − 0.979·25-s − 1.55·26-s + 0.192·27-s + 0.0653·28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - 9T \) |
| 59 | \( 1 - 3.48e3T \) |
good | 2 | \( 1 - 4.75T + 32T^{2} \) |
| 5 | \( 1 + 8.06T + 3.12e3T^{2} \) |
| 7 | \( 1 + 28.8T + 1.68e4T^{2} \) |
| 11 | \( 1 - 556.T + 1.61e5T^{2} \) |
| 13 | \( 1 + 1.12e3T + 3.71e5T^{2} \) |
| 17 | \( 1 - 447.T + 1.41e6T^{2} \) |
| 19 | \( 1 + 1.35e3T + 2.47e6T^{2} \) |
| 23 | \( 1 + 4.46e3T + 6.43e6T^{2} \) |
| 29 | \( 1 + 2.94e3T + 2.05e7T^{2} \) |
| 31 | \( 1 - 1.11e3T + 2.86e7T^{2} \) |
| 37 | \( 1 + 5.87e3T + 6.93e7T^{2} \) |
| 41 | \( 1 + 638.T + 1.15e8T^{2} \) |
| 43 | \( 1 + 9.93e3T + 1.47e8T^{2} \) |
| 47 | \( 1 - 2.50e4T + 2.29e8T^{2} \) |
| 53 | \( 1 - 1.93e4T + 4.18e8T^{2} \) |
| 61 | \( 1 - 7.81e3T + 8.44e8T^{2} \) |
| 67 | \( 1 - 3.68e4T + 1.35e9T^{2} \) |
| 71 | \( 1 - 2.41e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + 7.82e4T + 2.07e9T^{2} \) |
| 79 | \( 1 - 4.20e3T + 3.07e9T^{2} \) |
| 83 | \( 1 + 3.69e4T + 3.93e9T^{2} \) |
| 89 | \( 1 - 6.62e3T + 5.58e9T^{2} \) |
| 97 | \( 1 - 8.83e4T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.90553115923213706387936197344, −10.01736259890681030338762115553, −9.377901907625798017190548097218, −8.257085124332135366338489052186, −6.99620885626459293364338998637, −5.78441360459215798312607384769, −4.41883166826140359608333984377, −3.65704564083840324805145906435, −2.17623096942402966892730741968, 0,
2.17623096942402966892730741968, 3.65704564083840324805145906435, 4.41883166826140359608333984377, 5.78441360459215798312607384769, 6.99620885626459293364338998637, 8.257085124332135366338489052186, 9.377901907625798017190548097218, 10.01736259890681030338762115553, 11.90553115923213706387936197344