Properties

Label 2-177-1.1-c5-0-27
Degree $2$
Conductor $177$
Sign $1$
Analytic cond. $28.3879$
Root an. cond. $5.32803$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9.82·2-s − 9·3-s + 64.4·4-s + 77.2·5-s − 88.3·6-s − 23.9·7-s + 318.·8-s + 81·9-s + 758.·10-s + 145.·11-s − 580.·12-s + 635.·13-s − 235.·14-s − 694.·15-s + 1.06e3·16-s − 1.15e3·17-s + 795.·18-s + 90.4·19-s + 4.97e3·20-s + 215.·21-s + 1.43e3·22-s + 1.48e3·23-s − 2.86e3·24-s + 2.83e3·25-s + 6.24e3·26-s − 729·27-s − 1.54e3·28-s + ⋯
L(s)  = 1  + 1.73·2-s − 0.577·3-s + 2.01·4-s + 1.38·5-s − 1.00·6-s − 0.184·7-s + 1.76·8-s + 0.333·9-s + 2.39·10-s + 0.363·11-s − 1.16·12-s + 1.04·13-s − 0.321·14-s − 0.797·15-s + 1.04·16-s − 0.971·17-s + 0.578·18-s + 0.0574·19-s + 2.78·20-s + 0.106·21-s + 0.630·22-s + 0.583·23-s − 1.01·24-s + 0.907·25-s + 1.81·26-s − 0.192·27-s − 0.372·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(177\)    =    \(3 \cdot 59\)
Sign: $1$
Analytic conductor: \(28.3879\)
Root analytic conductor: \(5.32803\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 177,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(6.027125838\)
\(L(\frac12)\) \(\approx\) \(6.027125838\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 9T \)
59 \( 1 - 3.48e3T \)
good2 \( 1 - 9.82T + 32T^{2} \)
5 \( 1 - 77.2T + 3.12e3T^{2} \)
7 \( 1 + 23.9T + 1.68e4T^{2} \)
11 \( 1 - 145.T + 1.61e5T^{2} \)
13 \( 1 - 635.T + 3.71e5T^{2} \)
17 \( 1 + 1.15e3T + 1.41e6T^{2} \)
19 \( 1 - 90.4T + 2.47e6T^{2} \)
23 \( 1 - 1.48e3T + 6.43e6T^{2} \)
29 \( 1 - 6.89e3T + 2.05e7T^{2} \)
31 \( 1 - 4.59e3T + 2.86e7T^{2} \)
37 \( 1 + 9.38e3T + 6.93e7T^{2} \)
41 \( 1 + 1.06e4T + 1.15e8T^{2} \)
43 \( 1 - 1.03e4T + 1.47e8T^{2} \)
47 \( 1 - 1.71e4T + 2.29e8T^{2} \)
53 \( 1 + 1.74e4T + 4.18e8T^{2} \)
61 \( 1 - 6.69e3T + 8.44e8T^{2} \)
67 \( 1 + 1.33e4T + 1.35e9T^{2} \)
71 \( 1 + 5.18e3T + 1.80e9T^{2} \)
73 \( 1 + 4.72e4T + 2.07e9T^{2} \)
79 \( 1 + 9.87e4T + 3.07e9T^{2} \)
83 \( 1 - 2.15e4T + 3.93e9T^{2} \)
89 \( 1 + 4.15e4T + 5.58e9T^{2} \)
97 \( 1 + 3.79e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.06250713082407886120903450612, −11.08374885307063197479065827930, −10.21114251865598657728594133770, −8.850595911821867782853072692791, −6.76122324980814209154631294642, −6.26377397732042430052395000714, −5.35884806295060782471395813348, −4.31735911155321279922574474131, −2.86278985379174049968612595519, −1.51410512353981281761610422527, 1.51410512353981281761610422527, 2.86278985379174049968612595519, 4.31735911155321279922574474131, 5.35884806295060782471395813348, 6.26377397732042430052395000714, 6.76122324980814209154631294642, 8.850595911821867782853072692791, 10.21114251865598657728594133770, 11.08374885307063197479065827930, 12.06250713082407886120903450612

Graph of the $Z$-function along the critical line