L(s) = 1 | − 73.1·2-s − 729·3-s − 2.84e3·4-s − 3.78e4·5-s + 5.33e4·6-s + 3.70e5·7-s + 8.07e5·8-s + 5.31e5·9-s + 2.77e6·10-s − 7.88e6·11-s + 2.07e6·12-s − 2.23e6·13-s − 2.70e7·14-s + 2.76e7·15-s − 3.57e7·16-s + 6.39e7·17-s − 3.88e7·18-s + 1.32e8·19-s + 1.07e8·20-s − 2.69e8·21-s + 5.76e8·22-s − 1.21e9·23-s − 5.88e8·24-s + 2.15e8·25-s + 1.63e8·26-s − 3.87e8·27-s − 1.05e9·28-s + ⋯ |
L(s) = 1 | − 0.807·2-s − 0.577·3-s − 0.347·4-s − 1.08·5-s + 0.466·6-s + 1.18·7-s + 1.08·8-s + 0.333·9-s + 0.876·10-s − 1.34·11-s + 0.200·12-s − 0.128·13-s − 0.960·14-s + 0.626·15-s − 0.532·16-s + 0.642·17-s − 0.269·18-s + 0.645·19-s + 0.376·20-s − 0.686·21-s + 1.08·22-s − 1.71·23-s − 0.628·24-s + 0.176·25-s + 0.103·26-s − 0.192·27-s − 0.412·28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(14-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\C}(s+13/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(7)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{15}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + 729T \) |
| 59 | \( 1 + 4.21e10T \) |
good | 2 | \( 1 + 73.1T + 8.19e3T^{2} \) |
| 5 | \( 1 + 3.78e4T + 1.22e9T^{2} \) |
| 7 | \( 1 - 3.70e5T + 9.68e10T^{2} \) |
| 11 | \( 1 + 7.88e6T + 3.45e13T^{2} \) |
| 13 | \( 1 + 2.23e6T + 3.02e14T^{2} \) |
| 17 | \( 1 - 6.39e7T + 9.90e15T^{2} \) |
| 19 | \( 1 - 1.32e8T + 4.20e16T^{2} \) |
| 23 | \( 1 + 1.21e9T + 5.04e17T^{2} \) |
| 29 | \( 1 - 4.50e9T + 1.02e19T^{2} \) |
| 31 | \( 1 + 6.42e9T + 2.44e19T^{2} \) |
| 37 | \( 1 + 2.37e10T + 2.43e20T^{2} \) |
| 41 | \( 1 - 2.80e10T + 9.25e20T^{2} \) |
| 43 | \( 1 + 2.26e10T + 1.71e21T^{2} \) |
| 47 | \( 1 - 6.72e10T + 5.46e21T^{2} \) |
| 53 | \( 1 - 1.27e11T + 2.60e22T^{2} \) |
| 61 | \( 1 - 7.06e11T + 1.61e23T^{2} \) |
| 67 | \( 1 + 9.15e11T + 5.48e23T^{2} \) |
| 71 | \( 1 - 1.48e12T + 1.16e24T^{2} \) |
| 73 | \( 1 + 1.43e12T + 1.67e24T^{2} \) |
| 79 | \( 1 - 9.88e11T + 4.66e24T^{2} \) |
| 83 | \( 1 - 7.61e11T + 8.87e24T^{2} \) |
| 89 | \( 1 - 4.89e12T + 2.19e25T^{2} \) |
| 97 | \( 1 - 1.14e13T + 6.73e25T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.05180480598474583184045336530, −8.593699192895657041798103513815, −7.85201972044413462329968888565, −7.40985716969272986705088200977, −5.49647105741499557610868260930, −4.75574681851758811839102802574, −3.74955034912575380136404449462, −1.99669508631415985673779530942, −0.813442862828158527708203291566, 0,
0.813442862828158527708203291566, 1.99669508631415985673779530942, 3.74955034912575380136404449462, 4.75574681851758811839102802574, 5.49647105741499557610868260930, 7.40985716969272986705088200977, 7.85201972044413462329968888565, 8.593699192895657041798103513815, 10.05180480598474583184045336530