L(s) = 1 | − 166.·2-s + 729·3-s + 1.96e4·4-s + 4.35e4·5-s − 1.21e5·6-s − 3.95e5·7-s − 1.90e6·8-s + 5.31e5·9-s − 7.26e6·10-s + 2.80e6·11-s + 1.42e7·12-s + 2.66e7·13-s + 6.58e7·14-s + 3.17e7·15-s + 1.56e8·16-s + 1.05e8·17-s − 8.85e7·18-s + 1.56e8·19-s + 8.53e8·20-s − 2.88e8·21-s − 4.67e8·22-s − 2.25e8·23-s − 1.38e9·24-s + 6.76e8·25-s − 4.43e9·26-s + 3.87e8·27-s − 7.74e9·28-s + ⋯ |
L(s) = 1 | − 1.84·2-s + 0.577·3-s + 2.39·4-s + 1.24·5-s − 1.06·6-s − 1.26·7-s − 2.56·8-s + 0.333·9-s − 2.29·10-s + 0.477·11-s + 1.38·12-s + 1.53·13-s + 2.33·14-s + 0.719·15-s + 2.33·16-s + 1.06·17-s − 0.613·18-s + 0.764·19-s + 2.98·20-s − 0.733·21-s − 0.879·22-s − 0.317·23-s − 1.48·24-s + 0.554·25-s − 2.81·26-s + 0.192·27-s − 3.03·28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(14-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\C}(s+13/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(7)\) |
\(\approx\) |
\(1.815788851\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.815788851\) |
\(L(\frac{15}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - 729T \) |
| 59 | \( 1 + 4.21e10T \) |
good | 2 | \( 1 + 166.T + 8.19e3T^{2} \) |
| 5 | \( 1 - 4.35e4T + 1.22e9T^{2} \) |
| 7 | \( 1 + 3.95e5T + 9.68e10T^{2} \) |
| 11 | \( 1 - 2.80e6T + 3.45e13T^{2} \) |
| 13 | \( 1 - 2.66e7T + 3.02e14T^{2} \) |
| 17 | \( 1 - 1.05e8T + 9.90e15T^{2} \) |
| 19 | \( 1 - 1.56e8T + 4.20e16T^{2} \) |
| 23 | \( 1 + 2.25e8T + 5.04e17T^{2} \) |
| 29 | \( 1 - 4.55e8T + 1.02e19T^{2} \) |
| 31 | \( 1 - 3.56e9T + 2.44e19T^{2} \) |
| 37 | \( 1 - 2.68e10T + 2.43e20T^{2} \) |
| 41 | \( 1 + 1.72e10T + 9.25e20T^{2} \) |
| 43 | \( 1 - 2.91e10T + 1.71e21T^{2} \) |
| 47 | \( 1 - 1.44e8T + 5.46e21T^{2} \) |
| 53 | \( 1 - 4.30e10T + 2.60e22T^{2} \) |
| 61 | \( 1 + 2.11e11T + 1.61e23T^{2} \) |
| 67 | \( 1 + 9.17e11T + 5.48e23T^{2} \) |
| 71 | \( 1 - 1.33e12T + 1.16e24T^{2} \) |
| 73 | \( 1 + 1.30e12T + 1.67e24T^{2} \) |
| 79 | \( 1 - 3.47e12T + 4.66e24T^{2} \) |
| 83 | \( 1 - 3.63e12T + 8.87e24T^{2} \) |
| 89 | \( 1 + 1.84e12T + 2.19e25T^{2} \) |
| 97 | \( 1 + 1.21e13T + 6.73e25T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.803838167510711250088156957648, −9.529987215368210380921325025341, −8.653523672240829247836532835891, −7.62369339270210069186483650718, −6.41044132156728585888771327231, −5.98094422633344655458452183350, −3.47571324880959011049501421788, −2.58707152431163994032667916829, −1.44502128276082363891542630219, −0.809526474808124774166722611858,
0.809526474808124774166722611858, 1.44502128276082363891542630219, 2.58707152431163994032667916829, 3.47571324880959011049501421788, 5.98094422633344655458452183350, 6.41044132156728585888771327231, 7.62369339270210069186483650718, 8.653523672240829247836532835891, 9.529987215368210380921325025341, 9.803838167510711250088156957648