L(s) = 1 | − 135.·2-s − 729·3-s + 1.00e4·4-s − 3.67e4·5-s + 9.84e4·6-s − 1.77e5·7-s − 2.52e5·8-s + 5.31e5·9-s + 4.96e6·10-s − 8.38e6·11-s − 7.33e6·12-s + 4.85e6·13-s + 2.39e7·14-s + 2.67e7·15-s − 4.82e7·16-s + 1.51e7·17-s − 7.18e7·18-s − 1.04e8·19-s − 3.69e8·20-s + 1.29e8·21-s + 1.13e9·22-s + 5.03e8·23-s + 1.84e8·24-s + 1.29e8·25-s − 6.55e8·26-s − 3.87e8·27-s − 1.78e9·28-s + ⋯ |
L(s) = 1 | − 1.49·2-s − 0.577·3-s + 1.22·4-s − 1.05·5-s + 0.861·6-s − 0.569·7-s − 0.341·8-s + 0.333·9-s + 1.57·10-s − 1.42·11-s − 0.709·12-s + 0.278·13-s + 0.850·14-s + 0.607·15-s − 0.719·16-s + 0.152·17-s − 0.497·18-s − 0.510·19-s − 1.29·20-s + 0.328·21-s + 2.12·22-s + 0.708·23-s + 0.196·24-s + 0.106·25-s − 0.416·26-s − 0.192·27-s − 0.699·28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(14-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\C}(s+13/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(7)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{15}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + 729T \) |
| 59 | \( 1 + 4.21e10T \) |
good | 2 | \( 1 + 135.T + 8.19e3T^{2} \) |
| 5 | \( 1 + 3.67e4T + 1.22e9T^{2} \) |
| 7 | \( 1 + 1.77e5T + 9.68e10T^{2} \) |
| 11 | \( 1 + 8.38e6T + 3.45e13T^{2} \) |
| 13 | \( 1 - 4.85e6T + 3.02e14T^{2} \) |
| 17 | \( 1 - 1.51e7T + 9.90e15T^{2} \) |
| 19 | \( 1 + 1.04e8T + 4.20e16T^{2} \) |
| 23 | \( 1 - 5.03e8T + 5.04e17T^{2} \) |
| 29 | \( 1 + 4.08e9T + 1.02e19T^{2} \) |
| 31 | \( 1 + 6.12e9T + 2.44e19T^{2} \) |
| 37 | \( 1 - 9.81e9T + 2.43e20T^{2} \) |
| 41 | \( 1 - 3.36e10T + 9.25e20T^{2} \) |
| 43 | \( 1 + 3.54e10T + 1.71e21T^{2} \) |
| 47 | \( 1 - 6.44e10T + 5.46e21T^{2} \) |
| 53 | \( 1 + 1.40e11T + 2.60e22T^{2} \) |
| 61 | \( 1 + 7.41e11T + 1.61e23T^{2} \) |
| 67 | \( 1 - 9.59e11T + 5.48e23T^{2} \) |
| 71 | \( 1 + 7.60e11T + 1.16e24T^{2} \) |
| 73 | \( 1 + 5.28e11T + 1.67e24T^{2} \) |
| 79 | \( 1 - 1.53e11T + 4.66e24T^{2} \) |
| 83 | \( 1 - 4.32e12T + 8.87e24T^{2} \) |
| 89 | \( 1 - 3.47e12T + 2.19e25T^{2} \) |
| 97 | \( 1 - 5.67e12T + 6.73e25T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.827139377509474236147571009930, −8.868029601771430885704411828441, −7.76402370745592887772949906185, −7.34807607402776588377465423038, −6.03043733699186016684428502865, −4.69666873539473877342769513892, −3.36934912654453739368857648044, −1.99776280762276069655785173422, −0.62114520462066185868108138723, 0,
0.62114520462066185868108138723, 1.99776280762276069655785173422, 3.36934912654453739368857648044, 4.69666873539473877342769513892, 6.03043733699186016684428502865, 7.34807607402776588377465423038, 7.76402370745592887772949906185, 8.868029601771430885704411828441, 9.827139377509474236147571009930