L(s) = 1 | − 49.4·2-s + 729·3-s − 5.74e3·4-s + 4.51e4·5-s − 3.60e4·6-s + 1.16e5·7-s + 6.89e5·8-s + 5.31e5·9-s − 2.23e6·10-s + 2.81e6·11-s − 4.18e6·12-s − 3.96e6·13-s − 5.74e6·14-s + 3.29e7·15-s + 1.29e7·16-s − 9.19e7·17-s − 2.62e7·18-s + 2.77e8·19-s − 2.59e8·20-s + 8.45e7·21-s − 1.39e8·22-s − 6.95e8·23-s + 5.02e8·24-s + 8.19e8·25-s + 1.96e8·26-s + 3.87e8·27-s − 6.66e8·28-s + ⋯ |
L(s) = 1 | − 0.546·2-s + 0.577·3-s − 0.701·4-s + 1.29·5-s − 0.315·6-s + 0.372·7-s + 0.929·8-s + 0.333·9-s − 0.706·10-s + 0.478·11-s − 0.404·12-s − 0.227·13-s − 0.203·14-s + 0.746·15-s + 0.192·16-s − 0.924·17-s − 0.182·18-s + 1.35·19-s − 0.906·20-s + 0.215·21-s − 0.261·22-s − 0.980·23-s + 0.536·24-s + 0.671·25-s + 0.124·26-s + 0.192·27-s − 0.261·28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(14-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\C}(s+13/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(7)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{15}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - 729T \) |
| 59 | \( 1 - 4.21e10T \) |
good | 2 | \( 1 + 49.4T + 8.19e3T^{2} \) |
| 5 | \( 1 - 4.51e4T + 1.22e9T^{2} \) |
| 7 | \( 1 - 1.16e5T + 9.68e10T^{2} \) |
| 11 | \( 1 - 2.81e6T + 3.45e13T^{2} \) |
| 13 | \( 1 + 3.96e6T + 3.02e14T^{2} \) |
| 17 | \( 1 + 9.19e7T + 9.90e15T^{2} \) |
| 19 | \( 1 - 2.77e8T + 4.20e16T^{2} \) |
| 23 | \( 1 + 6.95e8T + 5.04e17T^{2} \) |
| 29 | \( 1 + 4.72e9T + 1.02e19T^{2} \) |
| 31 | \( 1 - 1.19e9T + 2.44e19T^{2} \) |
| 37 | \( 1 + 1.10e10T + 2.43e20T^{2} \) |
| 41 | \( 1 + 4.13e10T + 9.25e20T^{2} \) |
| 43 | \( 1 + 4.95e10T + 1.71e21T^{2} \) |
| 47 | \( 1 - 1.54e10T + 5.46e21T^{2} \) |
| 53 | \( 1 - 1.00e11T + 2.60e22T^{2} \) |
| 61 | \( 1 + 4.41e11T + 1.61e23T^{2} \) |
| 67 | \( 1 + 1.19e12T + 5.48e23T^{2} \) |
| 71 | \( 1 - 2.02e12T + 1.16e24T^{2} \) |
| 73 | \( 1 + 1.19e11T + 1.67e24T^{2} \) |
| 79 | \( 1 + 1.71e11T + 4.66e24T^{2} \) |
| 83 | \( 1 + 5.24e12T + 8.87e24T^{2} \) |
| 89 | \( 1 - 2.52e12T + 2.19e25T^{2} \) |
| 97 | \( 1 + 6.11e12T + 6.73e25T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.644079969714802742070866290272, −9.051653553220048848644207070495, −8.103850760335112939514000804575, −6.99960496128139279160721266295, −5.66850451607522504132902032885, −4.71152510072627389725190380009, −3.48422563887987199362022559215, −1.99177894097185104141602656771, −1.42271553395366380535612161999, 0,
1.42271553395366380535612161999, 1.99177894097185104141602656771, 3.48422563887987199362022559215, 4.71152510072627389725190380009, 5.66850451607522504132902032885, 6.99960496128139279160721266295, 8.103850760335112939514000804575, 9.051653553220048848644207070495, 9.644079969714802742070866290272