L(s) = 1 | + 60.2·2-s − 243·3-s + 1.57e3·4-s − 1.05e4·5-s − 1.46e4·6-s + 7.22e4·7-s − 2.82e4·8-s + 5.90e4·9-s − 6.37e5·10-s + 2.71e5·11-s − 3.83e5·12-s − 5.46e5·13-s + 4.35e6·14-s + 2.57e6·15-s − 4.93e6·16-s + 1.75e4·17-s + 3.55e6·18-s − 1.54e6·19-s − 1.67e7·20-s − 1.75e7·21-s + 1.63e7·22-s + 2.86e7·23-s + 6.87e6·24-s + 6.31e7·25-s − 3.29e7·26-s − 1.43e7·27-s + 1.14e8·28-s + ⋯ |
L(s) = 1 | + 1.33·2-s − 0.577·3-s + 0.770·4-s − 1.51·5-s − 0.768·6-s + 1.62·7-s − 0.305·8-s + 0.333·9-s − 2.01·10-s + 0.508·11-s − 0.444·12-s − 0.408·13-s + 2.16·14-s + 0.874·15-s − 1.17·16-s + 0.00299·17-s + 0.443·18-s − 0.143·19-s − 1.16·20-s − 0.938·21-s + 0.677·22-s + 0.928·23-s + 0.176·24-s + 1.29·25-s − 0.543·26-s − 0.192·27-s + 1.25·28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\C}(s+11/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(6)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{13}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + 243T \) |
| 59 | \( 1 - 7.14e8T \) |
good | 2 | \( 1 - 60.2T + 2.04e3T^{2} \) |
| 5 | \( 1 + 1.05e4T + 4.88e7T^{2} \) |
| 7 | \( 1 - 7.22e4T + 1.97e9T^{2} \) |
| 11 | \( 1 - 2.71e5T + 2.85e11T^{2} \) |
| 13 | \( 1 + 5.46e5T + 1.79e12T^{2} \) |
| 17 | \( 1 - 1.75e4T + 3.42e13T^{2} \) |
| 19 | \( 1 + 1.54e6T + 1.16e14T^{2} \) |
| 23 | \( 1 - 2.86e7T + 9.52e14T^{2} \) |
| 29 | \( 1 - 1.81e8T + 1.22e16T^{2} \) |
| 31 | \( 1 + 2.76e8T + 2.54e16T^{2} \) |
| 37 | \( 1 - 4.29e8T + 1.77e17T^{2} \) |
| 41 | \( 1 - 7.55e7T + 5.50e17T^{2} \) |
| 43 | \( 1 - 1.28e9T + 9.29e17T^{2} \) |
| 47 | \( 1 + 4.08e8T + 2.47e18T^{2} \) |
| 53 | \( 1 + 5.10e9T + 9.26e18T^{2} \) |
| 61 | \( 1 + 5.06e9T + 4.35e19T^{2} \) |
| 67 | \( 1 + 2.02e10T + 1.22e20T^{2} \) |
| 71 | \( 1 + 5.57e9T + 2.31e20T^{2} \) |
| 73 | \( 1 + 1.58e10T + 3.13e20T^{2} \) |
| 79 | \( 1 + 1.93e10T + 7.47e20T^{2} \) |
| 83 | \( 1 + 6.53e10T + 1.28e21T^{2} \) |
| 89 | \( 1 + 4.74e10T + 2.77e21T^{2} \) |
| 97 | \( 1 + 1.44e11T + 7.15e21T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.90386156657525599079993483915, −8.964356587141931490539220922033, −7.86612600361385988901888736497, −6.98799517659956241928722189698, −5.62318766102639794663842840687, −4.53024190449209772585531033477, −4.31625490449160052643819382124, −2.95027248333288669758430616246, −1.31917200436912123820181697192, 0,
1.31917200436912123820181697192, 2.95027248333288669758430616246, 4.31625490449160052643819382124, 4.53024190449209772585531033477, 5.62318766102639794663842840687, 6.98799517659956241928722189698, 7.86612600361385988901888736497, 8.964356587141931490539220922033, 10.90386156657525599079993483915