Properties

Label 2-177-1.1-c11-0-72
Degree $2$
Conductor $177$
Sign $-1$
Analytic cond. $135.996$
Root an. cond. $11.6617$
Motivic weight $11$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 26.3·2-s − 243·3-s − 1.35e3·4-s + 1.24e4·5-s + 6.39e3·6-s − 4.83e4·7-s + 8.96e4·8-s + 5.90e4·9-s − 3.28e5·10-s + 5.24e5·11-s + 3.29e5·12-s − 3.61e4·13-s + 1.27e6·14-s − 3.03e6·15-s + 4.13e5·16-s + 2.33e6·17-s − 1.55e6·18-s − 1.72e7·19-s − 1.69e7·20-s + 1.17e7·21-s − 1.38e7·22-s − 3.09e7·23-s − 2.17e7·24-s + 1.07e8·25-s + 9.51e5·26-s − 1.43e7·27-s + 6.55e7·28-s + ⋯
L(s)  = 1  − 0.581·2-s − 0.577·3-s − 0.661·4-s + 1.78·5-s + 0.335·6-s − 1.08·7-s + 0.966·8-s + 0.333·9-s − 1.03·10-s + 0.982·11-s + 0.381·12-s − 0.0269·13-s + 0.633·14-s − 1.03·15-s + 0.0986·16-s + 0.399·17-s − 0.193·18-s − 1.59·19-s − 1.18·20-s + 0.628·21-s − 0.571·22-s − 1.00·23-s − 0.558·24-s + 2.19·25-s + 0.0157·26-s − 0.192·27-s + 0.719·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\C}(s+11/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(177\)    =    \(3 \cdot 59\)
Sign: $-1$
Analytic conductor: \(135.996\)
Root analytic conductor: \(11.6617\)
Motivic weight: \(11\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 177,\ (\ :11/2),\ -1)\)

Particular Values

\(L(6)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{13}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 243T \)
59 \( 1 - 7.14e8T \)
good2 \( 1 + 26.3T + 2.04e3T^{2} \)
5 \( 1 - 1.24e4T + 4.88e7T^{2} \)
7 \( 1 + 4.83e4T + 1.97e9T^{2} \)
11 \( 1 - 5.24e5T + 2.85e11T^{2} \)
13 \( 1 + 3.61e4T + 1.79e12T^{2} \)
17 \( 1 - 2.33e6T + 3.42e13T^{2} \)
19 \( 1 + 1.72e7T + 1.16e14T^{2} \)
23 \( 1 + 3.09e7T + 9.52e14T^{2} \)
29 \( 1 - 2.08e8T + 1.22e16T^{2} \)
31 \( 1 + 2.18e8T + 2.54e16T^{2} \)
37 \( 1 + 4.80e8T + 1.77e17T^{2} \)
41 \( 1 + 2.86e8T + 5.50e17T^{2} \)
43 \( 1 - 1.35e9T + 9.29e17T^{2} \)
47 \( 1 + 2.88e9T + 2.47e18T^{2} \)
53 \( 1 - 2.98e9T + 9.26e18T^{2} \)
61 \( 1 - 1.17e10T + 4.35e19T^{2} \)
67 \( 1 + 1.30e10T + 1.22e20T^{2} \)
71 \( 1 - 4.46e9T + 2.31e20T^{2} \)
73 \( 1 - 2.16e10T + 3.13e20T^{2} \)
79 \( 1 - 3.67e10T + 7.47e20T^{2} \)
83 \( 1 - 1.84e10T + 1.28e21T^{2} \)
89 \( 1 + 2.23e10T + 2.77e21T^{2} \)
97 \( 1 - 2.89e10T + 7.15e21T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.02536247555824560024915937968, −9.386579295198672086673727107701, −8.543639384224717564193098293820, −6.73908760089506821353388846434, −6.17576202684268865447231922052, −5.11423405510473505241851425073, −3.81773160629511796409720733040, −2.14391643298388916407860183274, −1.15047460592171240084598215357, 0, 1.15047460592171240084598215357, 2.14391643298388916407860183274, 3.81773160629511796409720733040, 5.11423405510473505241851425073, 6.17576202684268865447231922052, 6.73908760089506821353388846434, 8.543639384224717564193098293820, 9.386579295198672086673727107701, 10.02536247555824560024915937968

Graph of the $Z$-function along the critical line