L(s) = 1 | − 68.7·2-s + 243·3-s + 2.67e3·4-s + 7.32e3·5-s − 1.67e4·6-s − 6.39e4·7-s − 4.34e4·8-s + 5.90e4·9-s − 5.03e5·10-s − 3.07e5·11-s + 6.51e5·12-s − 1.14e6·13-s + 4.39e6·14-s + 1.77e6·15-s − 2.50e6·16-s + 1.41e6·17-s − 4.06e6·18-s + 4.00e6·19-s + 1.96e7·20-s − 1.55e7·21-s + 2.11e7·22-s + 4.77e7·23-s − 1.05e7·24-s + 4.82e6·25-s + 7.85e7·26-s + 1.43e7·27-s − 1.71e8·28-s + ⋯ |
L(s) = 1 | − 1.51·2-s + 0.577·3-s + 1.30·4-s + 1.04·5-s − 0.877·6-s − 1.43·7-s − 0.468·8-s + 0.333·9-s − 1.59·10-s − 0.576·11-s + 0.755·12-s − 0.853·13-s + 2.18·14-s + 0.605·15-s − 0.596·16-s + 0.242·17-s − 0.506·18-s + 0.370·19-s + 1.37·20-s − 0.830·21-s + 0.875·22-s + 1.54·23-s − 0.270·24-s + 0.0987·25-s + 1.29·26-s + 0.192·27-s − 1.88·28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\C}(s+11/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(6)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{13}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - 243T \) |
| 59 | \( 1 + 7.14e8T \) |
good | 2 | \( 1 + 68.7T + 2.04e3T^{2} \) |
| 5 | \( 1 - 7.32e3T + 4.88e7T^{2} \) |
| 7 | \( 1 + 6.39e4T + 1.97e9T^{2} \) |
| 11 | \( 1 + 3.07e5T + 2.85e11T^{2} \) |
| 13 | \( 1 + 1.14e6T + 1.79e12T^{2} \) |
| 17 | \( 1 - 1.41e6T + 3.42e13T^{2} \) |
| 19 | \( 1 - 4.00e6T + 1.16e14T^{2} \) |
| 23 | \( 1 - 4.77e7T + 9.52e14T^{2} \) |
| 29 | \( 1 - 1.63e8T + 1.22e16T^{2} \) |
| 31 | \( 1 - 1.17e8T + 2.54e16T^{2} \) |
| 37 | \( 1 + 5.45e8T + 1.77e17T^{2} \) |
| 41 | \( 1 + 5.77e8T + 5.50e17T^{2} \) |
| 43 | \( 1 + 1.16e9T + 9.29e17T^{2} \) |
| 47 | \( 1 + 3.29e8T + 2.47e18T^{2} \) |
| 53 | \( 1 - 5.23e9T + 9.26e18T^{2} \) |
| 61 | \( 1 - 6.69e9T + 4.35e19T^{2} \) |
| 67 | \( 1 + 1.09e10T + 1.22e20T^{2} \) |
| 71 | \( 1 + 1.13e10T + 2.31e20T^{2} \) |
| 73 | \( 1 + 1.17e10T + 3.13e20T^{2} \) |
| 79 | \( 1 - 4.67e10T + 7.47e20T^{2} \) |
| 83 | \( 1 + 4.41e9T + 1.28e21T^{2} \) |
| 89 | \( 1 - 2.79e9T + 2.77e21T^{2} \) |
| 97 | \( 1 + 1.07e11T + 7.15e21T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.09595902445133490461409900018, −9.267734451986253444772339114876, −8.481686023278337432804057197924, −7.21500536310999736373474383591, −6.54295359203447116310606518326, −5.08290286006062986833085989133, −3.10643477187431478911419753517, −2.34916784492382513481763346825, −1.12306926627456847815940503238, 0,
1.12306926627456847815940503238, 2.34916784492382513481763346825, 3.10643477187431478911419753517, 5.08290286006062986833085989133, 6.54295359203447116310606518326, 7.21500536310999736373474383591, 8.481686023278337432804057197924, 9.267734451986253444772339114876, 10.09595902445133490461409900018