L(s) = 1 | + 9.61·2-s − 243·3-s − 1.95e3·4-s − 8.97e3·5-s − 2.33e3·6-s + 1.93e3·7-s − 3.85e4·8-s + 5.90e4·9-s − 8.63e4·10-s − 9.08e5·11-s + 4.75e5·12-s − 1.01e6·13-s + 1.86e4·14-s + 2.18e6·15-s + 3.63e6·16-s + 1.33e6·17-s + 5.67e5·18-s + 1.42e7·19-s + 1.75e7·20-s − 4.70e5·21-s − 8.74e6·22-s + 7.93e6·23-s + 9.35e6·24-s + 3.17e7·25-s − 9.74e6·26-s − 1.43e7·27-s − 3.78e6·28-s + ⋯ |
L(s) = 1 | + 0.212·2-s − 0.577·3-s − 0.954·4-s − 1.28·5-s − 0.122·6-s + 0.0435·7-s − 0.415·8-s + 0.333·9-s − 0.273·10-s − 1.70·11-s + 0.551·12-s − 0.757·13-s + 0.00924·14-s + 0.741·15-s + 0.866·16-s + 0.228·17-s + 0.0708·18-s + 1.32·19-s + 1.22·20-s − 0.0251·21-s − 0.361·22-s + 0.256·23-s + 0.239·24-s + 0.650·25-s − 0.160·26-s − 0.192·27-s − 0.0415·28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 177 ^{s/2} \, \Gamma_{\C}(s+11/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(6)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{13}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + 243T \) |
| 59 | \( 1 - 7.14e8T \) |
good | 2 | \( 1 - 9.61T + 2.04e3T^{2} \) |
| 5 | \( 1 + 8.97e3T + 4.88e7T^{2} \) |
| 7 | \( 1 - 1.93e3T + 1.97e9T^{2} \) |
| 11 | \( 1 + 9.08e5T + 2.85e11T^{2} \) |
| 13 | \( 1 + 1.01e6T + 1.79e12T^{2} \) |
| 17 | \( 1 - 1.33e6T + 3.42e13T^{2} \) |
| 19 | \( 1 - 1.42e7T + 1.16e14T^{2} \) |
| 23 | \( 1 - 7.93e6T + 9.52e14T^{2} \) |
| 29 | \( 1 - 6.25e6T + 1.22e16T^{2} \) |
| 31 | \( 1 + 1.62e8T + 2.54e16T^{2} \) |
| 37 | \( 1 - 1.71e8T + 1.77e17T^{2} \) |
| 41 | \( 1 - 5.36e8T + 5.50e17T^{2} \) |
| 43 | \( 1 - 1.25e9T + 9.29e17T^{2} \) |
| 47 | \( 1 - 1.92e9T + 2.47e18T^{2} \) |
| 53 | \( 1 - 3.11e9T + 9.26e18T^{2} \) |
| 61 | \( 1 + 8.48e9T + 4.35e19T^{2} \) |
| 67 | \( 1 - 4.77e9T + 1.22e20T^{2} \) |
| 71 | \( 1 - 5.10e8T + 2.31e20T^{2} \) |
| 73 | \( 1 - 1.18e10T + 3.13e20T^{2} \) |
| 79 | \( 1 + 2.99e10T + 7.47e20T^{2} \) |
| 83 | \( 1 - 5.44e10T + 1.28e21T^{2} \) |
| 89 | \( 1 + 2.89e10T + 2.77e21T^{2} \) |
| 97 | \( 1 - 1.91e10T + 7.15e21T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.25759438391578381996549620818, −9.196180059520656002525607756374, −7.83783351517254583152686248080, −7.47300278978670083938851209450, −5.59546849694477344794891073114, −4.93802133712712767983677314863, −3.93902719957780919891017715210, −2.80904850714799141884066334082, −0.76601521420538472466556276588, 0,
0.76601521420538472466556276588, 2.80904850714799141884066334082, 3.93902719957780919891017715210, 4.93802133712712767983677314863, 5.59546849694477344794891073114, 7.47300278978670083938851209450, 7.83783351517254583152686248080, 9.196180059520656002525607756374, 10.25759438391578381996549620818