L(s) = 1 | + 2.23i·5-s − 5.22i·7-s + 3·9-s + 3.31·11-s − 3.56i·13-s − 4.55·17-s − 5.00·25-s − 8.94i·31-s + 11.6·35-s − 9.96·43-s + 6.70i·45-s − 20.2·49-s + 7.41i·55-s + 4·59-s − 15.6i·63-s + ⋯ |
L(s) = 1 | + 0.999i·5-s − 1.97i·7-s + 9-s + 1.00·11-s − 0.989i·13-s − 1.10·17-s − 1.00·25-s − 1.60i·31-s + 1.97·35-s − 1.51·43-s + 0.999i·45-s − 2.89·49-s + 0.999i·55-s + 0.520·59-s − 1.97i·63-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.292 + 0.956i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.292 + 0.956i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.686200637\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.686200637\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 - 2.23iT \) |
| 11 | \( 1 - 3.31T \) |
good | 3 | \( 1 - 3T^{2} \) |
| 7 | \( 1 + 5.22iT - 7T^{2} \) |
| 13 | \( 1 + 3.56iT - 13T^{2} \) |
| 17 | \( 1 + 4.55T + 17T^{2} \) |
| 19 | \( 1 - 19T^{2} \) |
| 23 | \( 1 + 23T^{2} \) |
| 29 | \( 1 + 29T^{2} \) |
| 31 | \( 1 + 8.94iT - 31T^{2} \) |
| 37 | \( 1 + 37T^{2} \) |
| 41 | \( 1 - 41T^{2} \) |
| 43 | \( 1 + 9.96T + 43T^{2} \) |
| 47 | \( 1 + 47T^{2} \) |
| 53 | \( 1 + 53T^{2} \) |
| 59 | \( 1 - 4T + 59T^{2} \) |
| 61 | \( 1 + 61T^{2} \) |
| 67 | \( 1 - 67T^{2} \) |
| 71 | \( 1 + 14.8iT - 71T^{2} \) |
| 73 | \( 1 - 17.0T + 73T^{2} \) |
| 79 | \( 1 + 79T^{2} \) |
| 83 | \( 1 - 13.3T + 83T^{2} \) |
| 89 | \( 1 - 13.2T + 89T^{2} \) |
| 97 | \( 1 - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.445547266325023790417581952383, −8.030347446742556860086851920059, −7.48361851604946341195493909597, −6.74239265097759169873641023132, −6.34925320247788105555025181798, −4.78670062312779101918002803795, −3.96070241436589144071922054181, −3.46269347026103215323164127748, −1.94741683097878626597325397726, −0.65416509278143533865066245237,
1.50456906999660470192152643876, 2.20538633294883531618676592062, 3.69496953631199221302591573331, 4.67750584792565812344684798222, 5.23344372773756174191077280579, 6.36174490742613981299028037543, 6.83065092175873683048664192705, 8.209191876502090397529216815677, 8.854058307420262072611344536645, 9.213814396164932913874113888061