L(s) = 1 | − 2.23i·5-s + 0.856i·7-s + 3·9-s − 3.31·11-s + 6.26i·13-s + 6.87·17-s − 5.00·25-s + 8.94i·31-s + 1.91·35-s + 8.52·43-s − 6.70i·45-s + 6.26·49-s + 7.41i·55-s + 4·59-s + 2.56i·63-s + ⋯ |
L(s) = 1 | − 0.999i·5-s + 0.323i·7-s + 9-s − 1.00·11-s + 1.73i·13-s + 1.66·17-s − 1.00·25-s + 1.60i·31-s + 0.323·35-s + 1.30·43-s − 0.999i·45-s + 0.895·49-s + 0.999i·55-s + 0.520·59-s + 0.323i·63-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.956 - 0.292i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.956 - 0.292i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.785406832\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.785406832\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + 2.23iT \) |
| 11 | \( 1 + 3.31T \) |
good | 3 | \( 1 - 3T^{2} \) |
| 7 | \( 1 - 0.856iT - 7T^{2} \) |
| 13 | \( 1 - 6.26iT - 13T^{2} \) |
| 17 | \( 1 - 6.87T + 17T^{2} \) |
| 19 | \( 1 - 19T^{2} \) |
| 23 | \( 1 + 23T^{2} \) |
| 29 | \( 1 + 29T^{2} \) |
| 31 | \( 1 - 8.94iT - 31T^{2} \) |
| 37 | \( 1 + 37T^{2} \) |
| 41 | \( 1 - 41T^{2} \) |
| 43 | \( 1 - 8.52T + 43T^{2} \) |
| 47 | \( 1 + 47T^{2} \) |
| 53 | \( 1 + 53T^{2} \) |
| 59 | \( 1 - 4T + 59T^{2} \) |
| 61 | \( 1 + 61T^{2} \) |
| 67 | \( 1 - 67T^{2} \) |
| 71 | \( 1 + 14.8iT - 71T^{2} \) |
| 73 | \( 1 - 0.261T + 73T^{2} \) |
| 79 | \( 1 + 79T^{2} \) |
| 83 | \( 1 - 12.3T + 83T^{2} \) |
| 89 | \( 1 + 13.2T + 89T^{2} \) |
| 97 | \( 1 - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.316845946110165033433302509672, −8.641236227543284590546001286858, −7.73729879408603689940929588966, −7.11441722335080251334275723394, −6.01682336930457203116538102494, −5.13871028947801135481542839989, −4.51185833430750500405981398792, −3.53996608564832832692130425813, −2.11628223728650264840032888236, −1.14504567082049547791054917507,
0.808546003440423809980394154175, 2.41627868069008889547525042718, 3.25224391446947849719069425520, 4.11634842630608740373290757545, 5.40973591133311934701795843266, 5.90038892470565251894729134868, 7.13056082660555410424607557888, 7.67663460218969479154680973961, 8.084377620849351780985811170459, 9.596330269617482204635759755747