L(s) = 1 | − 0.792i·3-s + 1.37·5-s + 2.37·9-s − 3.31i·11-s − 1.08i·15-s + 6.13i·23-s − 3.11·25-s − 4.25i·27-s + 9.30i·31-s − 2.62·33-s − 12.1·37-s + 3.25·45-s + 6.63i·47-s − 7·49-s + 6·53-s + ⋯ |
L(s) = 1 | − 0.457i·3-s + 0.613·5-s + 0.790·9-s − 1.00i·11-s − 0.280i·15-s + 1.27i·23-s − 0.623·25-s − 0.819i·27-s + 1.67i·31-s − 0.457·33-s − 1.99·37-s + 0.485·45-s + 0.967i·47-s − 49-s + 0.824·53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 176 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.866 + 0.5i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 176 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.866 + 0.5i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.24970 - 0.334856i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.24970 - 0.334856i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 11 | \( 1 + 3.31iT \) |
good | 3 | \( 1 + 0.792iT - 3T^{2} \) |
| 5 | \( 1 - 1.37T + 5T^{2} \) |
| 7 | \( 1 + 7T^{2} \) |
| 13 | \( 1 - 13T^{2} \) |
| 17 | \( 1 - 17T^{2} \) |
| 19 | \( 1 + 19T^{2} \) |
| 23 | \( 1 - 6.13iT - 23T^{2} \) |
| 29 | \( 1 - 29T^{2} \) |
| 31 | \( 1 - 9.30iT - 31T^{2} \) |
| 37 | \( 1 + 12.1T + 37T^{2} \) |
| 41 | \( 1 - 41T^{2} \) |
| 43 | \( 1 + 43T^{2} \) |
| 47 | \( 1 - 6.63iT - 47T^{2} \) |
| 53 | \( 1 - 6T + 53T^{2} \) |
| 59 | \( 1 + 14.6iT - 59T^{2} \) |
| 61 | \( 1 - 61T^{2} \) |
| 67 | \( 1 - 16.2iT - 67T^{2} \) |
| 71 | \( 1 + 10.8iT - 71T^{2} \) |
| 73 | \( 1 - 73T^{2} \) |
| 79 | \( 1 + 79T^{2} \) |
| 83 | \( 1 + 83T^{2} \) |
| 89 | \( 1 - 18.8T + 89T^{2} \) |
| 97 | \( 1 + 0.116T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.73564373406639655592685129563, −11.72245059291821505331365226180, −10.59388607790233253276999367049, −9.656254189946741682021030247356, −8.545077866047027119965392549875, −7.36446723234155150585542721975, −6.31941455450258019569995334222, −5.18262010759134743285302351250, −3.46856806928306764618609269897, −1.62860371650146495490960633779,
2.07051252179643636702352886208, 4.00216064520592543125067253567, 5.09749591446562663117408713672, 6.47809816408198717520290975700, 7.55691026273009723830964780581, 8.971505389799373493866520546261, 9.938977076015503316310252348926, 10.47291822819117213724835335424, 11.88345368670506347705151222114, 12.82018501358825780657637554935