L(s) = 1 | + 3·2-s + 5·4-s + 7·7-s + 3·8-s + 9·9-s − 6·11-s + 21·14-s − 11·16-s + 27·18-s − 18·22-s − 18·23-s + 35·28-s − 54·29-s − 45·32-s + 45·36-s + 38·37-s − 58·43-s − 30·44-s − 54·46-s + 49·49-s + 6·53-s + 21·56-s − 162·58-s + 63·63-s − 91·64-s + 118·67-s + 114·71-s + ⋯ |
L(s) = 1 | + 3/2·2-s + 5/4·4-s + 7-s + 3/8·8-s + 9-s − 0.545·11-s + 3/2·14-s − 0.687·16-s + 3/2·18-s − 0.818·22-s − 0.782·23-s + 5/4·28-s − 1.86·29-s − 1.40·32-s + 5/4·36-s + 1.02·37-s − 1.34·43-s − 0.681·44-s − 1.17·46-s + 49-s + 6/53·53-s + 3/8·56-s − 2.79·58-s + 63-s − 1.42·64-s + 1.76·67-s + 1.60·71-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)Λ(3−s)
Λ(s)=(=(175s/2ΓC(s+1)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
175
= 52⋅7
|
Sign: |
1
|
Analytic conductor: |
4.76840 |
Root analytic conductor: |
2.18366 |
Motivic weight: |
2 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ175(76,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 175, ( :1), 1)
|
Particular Values
L(23) |
≈ |
3.340644829 |
L(21) |
≈ |
3.340644829 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 7 | 1−pT |
good | 2 | 1−3T+p2T2 |
| 3 | (1−pT)(1+pT) |
| 11 | 1+6T+p2T2 |
| 13 | (1−pT)(1+pT) |
| 17 | (1−pT)(1+pT) |
| 19 | (1−pT)(1+pT) |
| 23 | 1+18T+p2T2 |
| 29 | 1+54T+p2T2 |
| 31 | (1−pT)(1+pT) |
| 37 | 1−38T+p2T2 |
| 41 | (1−pT)(1+pT) |
| 43 | 1+58T+p2T2 |
| 47 | (1−pT)(1+pT) |
| 53 | 1−6T+p2T2 |
| 59 | (1−pT)(1+pT) |
| 61 | (1−pT)(1+pT) |
| 67 | 1−118T+p2T2 |
| 71 | 1−114T+p2T2 |
| 73 | (1−pT)(1+pT) |
| 79 | 1+94T+p2T2 |
| 83 | (1−pT)(1+pT) |
| 89 | (1−pT)(1+pT) |
| 97 | (1−pT)(1+pT) |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.73499309097954401241261364186, −11.72114946429536415960283641224, −10.90396618488062604506571068582, −9.634744201767806553925033946699, −8.094351705474056676734448544284, −7.03718216062352377145727309085, −5.70021710145192853096878990643, −4.75622814773392679209724927762, −3.78207417059432049215665954029, −2.05341769902145376345960214580,
2.05341769902145376345960214580, 3.78207417059432049215665954029, 4.75622814773392679209724927762, 5.70021710145192853096878990643, 7.03718216062352377145727309085, 8.094351705474056676734448544284, 9.634744201767806553925033946699, 10.90396618488062604506571068582, 11.72114946429536415960283641224, 12.73499309097954401241261364186