Properties

Label 2-175-7.6-c0-0-0
Degree $2$
Conductor $175$
Sign $1$
Analytic cond. $0.0873363$
Root an. cond. $0.295527$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 7-s + 8-s + 9-s − 11-s − 14-s − 16-s − 18-s + 22-s − 23-s − 29-s − 37-s − 43-s + 46-s + 49-s + 2·53-s + 56-s + 58-s + 63-s + 64-s − 67-s − 71-s + 72-s + 74-s − 77-s − 79-s + 81-s + ⋯
L(s)  = 1  − 2-s + 7-s + 8-s + 9-s − 11-s − 14-s − 16-s − 18-s + 22-s − 23-s − 29-s − 37-s − 43-s + 46-s + 49-s + 2·53-s + 56-s + 58-s + 63-s + 64-s − 67-s − 71-s + 72-s + 74-s − 77-s − 79-s + 81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(175\)    =    \(5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(0.0873363\)
Root analytic conductor: \(0.295527\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{175} (76, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 175,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.4347380175\)
\(L(\frac12)\) \(\approx\) \(0.4347380175\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
7 \( 1 - T \)
good2 \( 1 + T + T^{2} \)
3 \( ( 1 - T )( 1 + T ) \)
11 \( 1 + T + T^{2} \)
13 \( ( 1 - T )( 1 + T ) \)
17 \( ( 1 - T )( 1 + T ) \)
19 \( ( 1 - T )( 1 + T ) \)
23 \( 1 + T + T^{2} \)
29 \( 1 + T + T^{2} \)
31 \( ( 1 - T )( 1 + T ) \)
37 \( 1 + T + T^{2} \)
41 \( ( 1 - T )( 1 + T ) \)
43 \( 1 + T + T^{2} \)
47 \( ( 1 - T )( 1 + T ) \)
53 \( ( 1 - T )^{2} \)
59 \( ( 1 - T )( 1 + T ) \)
61 \( ( 1 - T )( 1 + T ) \)
67 \( 1 + T + T^{2} \)
71 \( 1 + T + T^{2} \)
73 \( ( 1 - T )( 1 + T ) \)
79 \( 1 + T + T^{2} \)
83 \( ( 1 - T )( 1 + T ) \)
89 \( ( 1 - T )( 1 + T ) \)
97 \( ( 1 - T )( 1 + T ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.03670795456117638900866772070, −11.77331474767626381219807458502, −10.58543688988728015975855782152, −10.06503499894156669614475940200, −8.846864120040407752443865863336, −7.928371315358622709755528775163, −7.21219424452815957631789646245, −5.32772362441185835516557683036, −4.20961109287914824166132706629, −1.81080441085222069438971480503, 1.81080441085222069438971480503, 4.20961109287914824166132706629, 5.32772362441185835516557683036, 7.21219424452815957631789646245, 7.928371315358622709755528775163, 8.846864120040407752443865863336, 10.06503499894156669614475940200, 10.58543688988728015975855782152, 11.77331474767626381219807458502, 13.03670795456117638900866772070

Graph of the $Z$-function along the critical line