Properties

Label 2-175-5.4-c9-0-33
Degree $2$
Conductor $175$
Sign $0.894 - 0.447i$
Analytic cond. $90.1312$
Root an. cond. $9.49374$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 13.3i·2-s + 163. i·3-s + 333.·4-s + 2.18e3·6-s − 2.40e3i·7-s − 1.12e4i·8-s − 7.02e3·9-s − 9.01e4·11-s + 5.44e4i·12-s − 3.19e3i·13-s − 3.20e4·14-s + 1.98e4·16-s − 1.16e5i·17-s + 9.38e4i·18-s + 1.42e5·19-s + ⋯
L(s)  = 1  − 0.590i·2-s + 1.16i·3-s + 0.651·4-s + 0.687·6-s − 0.377i·7-s − 0.975i·8-s − 0.356·9-s − 1.85·11-s + 0.758i·12-s − 0.0310i·13-s − 0.223·14-s + 0.0756·16-s − 0.338i·17-s + 0.210i·18-s + 0.250·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(175\)    =    \(5^{2} \cdot 7\)
Sign: $0.894 - 0.447i$
Analytic conductor: \(90.1312\)
Root analytic conductor: \(9.49374\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: $\chi_{175} (99, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 175,\ (\ :9/2),\ 0.894 - 0.447i)\)

Particular Values

\(L(5)\) \(\approx\) \(2.429304406\)
\(L(\frac12)\) \(\approx\) \(2.429304406\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
7 \( 1 + 2.40e3iT \)
good2 \( 1 + 13.3iT - 512T^{2} \)
3 \( 1 - 163. iT - 1.96e4T^{2} \)
11 \( 1 + 9.01e4T + 2.35e9T^{2} \)
13 \( 1 + 3.19e3iT - 1.06e10T^{2} \)
17 \( 1 + 1.16e5iT - 1.18e11T^{2} \)
19 \( 1 - 1.42e5T + 3.22e11T^{2} \)
23 \( 1 - 1.27e6iT - 1.80e12T^{2} \)
29 \( 1 - 1.42e6T + 1.45e13T^{2} \)
31 \( 1 - 9.67e6T + 2.64e13T^{2} \)
37 \( 1 - 8.67e6iT - 1.29e14T^{2} \)
41 \( 1 - 1.32e7T + 3.27e14T^{2} \)
43 \( 1 + 2.97e7iT - 5.02e14T^{2} \)
47 \( 1 - 1.07e7iT - 1.11e15T^{2} \)
53 \( 1 - 7.07e7iT - 3.29e15T^{2} \)
59 \( 1 + 6.40e6T + 8.66e15T^{2} \)
61 \( 1 - 1.69e8T + 1.16e16T^{2} \)
67 \( 1 - 1.16e8iT - 2.72e16T^{2} \)
71 \( 1 - 1.44e8T + 4.58e16T^{2} \)
73 \( 1 - 1.60e8iT - 5.88e16T^{2} \)
79 \( 1 - 4.89e8T + 1.19e17T^{2} \)
83 \( 1 + 8.31e7iT - 1.86e17T^{2} \)
89 \( 1 + 2.08e6T + 3.50e17T^{2} \)
97 \( 1 - 3.15e8iT - 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.83528286333223257407560110660, −10.26272065347909706325050488133, −9.629325723665753692087251597417, −8.081553816165641229269226757972, −7.06784005264015917951154514935, −5.57124034942870358947595683269, −4.53264872413193179460655917773, −3.33483757365466571059116675975, −2.46103927508604375301394337756, −0.866351364759143065827533756803, 0.65959112185435319163336968953, 2.10562849788965077745367250442, 2.75518979994858561130237228565, 4.94255316455507408931999102656, 6.03324718527696366176242801086, 6.82364418855635213428000628451, 7.889462811636004212312028419465, 8.256849424830678280737041346218, 10.08259875498127774529876549206, 11.05919961201444245693184129245

Graph of the $Z$-function along the critical line